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Abstract. Sensitive cryptographic information, e.g. AES secret keys, can be extracted
from the electromagnetic (EM) leakages unintentionally emitted by a device using
techniques such as Correlation Electromagnetic Analysis (CEMA). In this paper, we
introduce Correlation Optimization (CO), a novel approach that improves CEMA
attacks by formulating the selection of useful EM leakage samples in a trace as a
machine learning optimization problem. To this end, we propose the correlation
loss function, which aims to maximize the Pearson correlation between a set of
EM traces and the true AES key during training. We show that CO works with
high-dimensional and noisy traces, regardless of time-domain trace alignment and
without requiring prior knowledge of the power consumption characteristics of the
cryptographic hardware. We evaluate our approach using the ASCAD benchmark
dataset and a custom dataset of EM leakages from an Arduino Duemilanove, captured
with a USRP B200 SDR. Our results indicate that the masked AES implementation
used in all three ASCAD datasets can be broken with a shallow Multilayer Perceptron
model, whilst requiring only 1,000 test traces on average. A similar methodology was
employed to break the unprotected AES implementation from our custom dataset,
using 22,000 unaligned and unfiltered test traces.
Keywords: Correlation Optimization · Software Defined Radio · Correlation Electro-
magnetic Analysis · correlation loss · machine learning

1 Introduction
In present-day communication systems, the confidentiality and integrity of information
is primarily ensured through the use of cryptographic algorithms. At their core, these
algorithms rely on secret pieces of information, i.e. keys, known only to the communicating
parties in order to obtain a computational advantage over the adversary. That is, given
that the cryptographic algorithm is not theoretically broken, it should be computationally
infeasible for an adversary to modify or eavesdrop on the communication without having
access to the secret information. However, as demonstrated in numerous previous works (see
[ZF05] and the references therein), an adversary can infer secret information by statistically
analyzing physical properties of the hardware implementation during the execution of a
cipher. These physical properties, named side channels, can thus unintentionally “leak”
information to an adversary.

In the literature, various types of side channels have been identified that can be
used to exfiltrate secret information, including power consumption [KJJ99], tempera-
ture [BKMN09, HS13], acoustic [BDG+10, GST14, ST04], and electromagnetic (EM) side
channels [GMO01, GHT05, GW08, GPT15, Mon13, MBTO13, PSB+18, QS01, VP09].
Out of those, the EM side channel is particularly interesting from the perspective of an
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adversary, for a number of reasons. First, EM waves can be captured without requiring
physical contact with the hardware [Mon13, OC16]. This is in contrast to power consump-
tion analysis, where the device under attack must typically be modified to obtain accurate
measurements [Tiu05]. Second, EM leakage can originate from various components of
a circuit due to coupling effects and circuit geometry [AARR03, MRG+10, Mon13] and
is therefore hard to mitigate completely. Third, EM waves can potentially travel long
distances, depending on the power and wavelength of the leakage signal. For example,
Vuagnoux and Pasini demonstrated that EM emanations of PS/2 keyboards can be cap-
tured at a distance of up to 20 meters, even through walls [VP09]. Another example
can be found in the work of Guri et al., where the invocation of specific memory-related
instructions was used to transfer data via the resulting EM leakage, over a distance of
up to 30 meters [GKH+15]. For these reasons, we will exclusively focus on the EM side
channel in this paper, although the concepts described could be applied to other side
channels as well.

A known methodology to perform an EM-based side-channel attack on a device is Cor-
relation Electromagnetic Analysis (CEMA) [DLM+09], which is based on the Correlation
Power Analysis (CPA) attack for power side channels introduced by Brier et al. in [BCO04].
In a CEMA attack, the adversary assumes that the power consumption of the hardware is
related to the Hamming distance or Hamming weight leakage model. Since consuming
power produces electromagnetic radiation [KJJ99], the resulting EM emissions can be
captured by an adversary and correlated with the leakage model in order to determine the
secret information being processed.

In template or profiling attacks on the other hand, the adversary makes no preliminary
assumption about the leakage model [OC16]. Instead, the adversary is assumed to be in
possession of a “training” device identical to the device being attacked [CRR02]. The attack
is then performed in a two-phase process. In the training phase, the adversary estimates the
probability distribution of the secret information in function of the measured EM leakage of
the training device. Then, in the attack phase, the EM leakage of the device under attack
is matched with the most probable template from the training phase [CRR02, PSB+18].

Recently, several works have indicated that profiling attacks can be interpreted as
classification problems in the domains of Machine Learning (ML) and Deep Learning
(DL) [CDP17, HGDM+11, LPMS17, MPP16, PSH+18]. In this paper, we introduce a
novel profiling attack that, unlike these previous approaches, does not rely on classification
for determining the secret key. More specifically, we do not directly classify individual EM
traces into secret-key, intermediate, or Hamming values, but rather learn an encoding1 of
the EM traces that maximizes the Pearson correlation with the correct secret key. To this
end, we introduce the “correlation loss function”, which allows us to optimize the encodings
for use in a CEMA attack using conventional ML optimization algorithms such as gradient
descent. Furthermore, we show that our approach kan be applied in the frequency domain,
which removes the requirement of aligning the EM traces [GHT05, GW08, Mon13, Tiu05].
We evaluate our methodology both on the ASCAD dataset [PSB+18] as well as a custom
dataset comprised of Advanced Encryption Standard (AES) operations performed by an
ATmega 328. The EM traces of the custom dataset were recorded using a Software Defined
Radio (SDR) and commodity EM probe, which shows that our approach can be used to
perform a CEMA even with low-cost EM measurement hardware.

The structure of this paper is as follows: in Section 2, we will first discuss a number
of concepts that are necessary for understanding the remainder of the paper. Section 3
then describes our Correlation Optimization technique, which is the main contribution of
this paper. In this section, the technique will also be discussed and evaluated on both the
ASCAD dataset, as well as the custom dataset. Related works are described in Section 4,

1Encodings are widely used for applications such as face verification and face recognition [SKP15].
Some works in the machine learning literature refer to encodings as “embeddings”.
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followed by conclusions and directions for future work in Sections 5 and 6.

2 Background
2.1 Notation and terminology
In both the Side-Channel Analysis (SCA) and ML literature, the notational conventions
and terminology vary depending on the authors of the work. Furthermore, some of the
notations used in these domains overlap. As a concrete example, the output of the
Hamming Weight (HW) power consumption model in the work of Brier et al. is denoted
as W [BCO04], which is also a common notation for the weight matrix in the ML domain.
In the interest of avoiding ambiguities, we will now specify the notations and terminology
used in this paper.

We define a dataset as a collection of traces, where a trace is equivalent to a capture
or measurement of the EM signal generated during one execution of an algorithm. Each
trace consists of a number of samples of the instantaneous amplitude of the EM signal.
A training example is a single trace that is used as the input to a ML model during its
training phase. In this context, the samples of a trace (or a transformation thereof) are the
features or inputs to the model. The labels or classes are then the outputs of the model.
In this paper, we will often refer to the outputs of the model for a given input trace as the
encodings of that trace.

Formally, we denote a training example with nx features as a tensor x = {x1, x2, . . . xnx}, x ∈
Rnx . All nm training examples can be stacked together in a matrix X as follows:

X =


x

(1)
1 x

(1)
2 . . . x

(1)
nx

x
(2)
1

. . . . . . x
(2)
nx

...
. . . . . .

...
x

(nm)
1 x

(nm)
2 . . . x

(nm)
nx


Note that individual training examples are referenced using a superscript index between

parentheses, e.g. x(4) represents the 4th training example. A summary of all variables and
notations used in this paper can be found in Table 1.

2.2 Advanced Encryption Standard
The AES cipher is widely used for providing confidentiality and integrity in protocols
such as Wi-Fi (802.11) [IEE12], Bluetooth [Blu16], TLS [DR08], and many others. The
cipher has been extensively studied in previous works. For a detailed overview of the
inner workings of AES, we refer the reader to the design document of AES [DR13]. This
paper focuses exclusively on side-channel attacks against the first round of AES. In this
round, the RoundKey is initialized to the secret key k = {k1, k2, . . . , k16} [DR13]. We will
henceforth refer to the elements of k as “key bytes”. Given a plaintext p = {p1, p2, . . . p16},
the intermediate value v after the SubBytes operation is equal to:

v = SBox(p⊕ k) (1)

Because the secret key k is processed directly during the first round of the cipher,
performing a side-channel attack is trivial. Several countermeasures have been developed
to increase the difficulty of successfully performing an attack. A first countermeasure is
called “masking”, which attempts to change the power consumption characteristics of a
device by randomizing the processed intermediate values [Mon13]. An example of such an
approach is the “table recomputation” method [PR07].
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Table 1: Overview of the notations used in this paper.

Symbol Description Symbol Description

α Scaling factor. nb Number of bits.
A[l] Activations matrix of layer l. nl Number of layers.
b Bias tensor. nm Number of training examples.
D Current state. nx Number of features.
d Key byte guess score tensor. φ Encoding function.
ε Value of 10−15. p Plaintext tensor.
η Noise tensor. ρ Pearson correlation coefficient.
g Activation function. R Reference state.
H Hypothesis matrix. t Time unit.
h Tensor of model hypothesis values. v Intermediate value.
ht Power consumption model at time t. W [l] Weight matrix of layer l.

J(ŷ, y) Cost function. X Matrix of training examples.
k True key tensor. x

(i)
j Feature j of training example i.

k̂ Key guess tensor. Ŷ Matrix of model output values.
ks Byte s of k. Y Matrix of true values.

L(ŷ, y) Loss function. ŷ Model output values (encodings).
l Layer index. y True model output.

A second commonly implemented countermeasure is “hiding”, which, as the name
implies attempts to hide the hardware power consumption characteristics from an adversary.
This can be done in a number of ways, for example by introducing jitter to the clock of
the device, introducing dummy instructions, adding random interrupts, etc. [Mon13].

2.3 Correlation Electromagnetic Analysis of AES
The classic CPA technique, as first described in the work of Brier et al. [BCO04], utilizes
the Hamming Distance (HD) to model the data leakage through a power side channel.
More specifically, the number of bits switching from an nb-bit reference state R to another
state D at a given time t is assumed to be linearly related to the power consumption of the
hardware [BPT11, Mon13, TOT+14, Tiu05]. Formally, we define this power consumption
model h as follows: [BCO04]

ht = αHW (Dt ⊕Rt) + ηt (2)

In the above equation, HW is the Hamming weight function, α is a scaling factor and
ηt is a noise term at time t. Generally, α and η are unknown, and the adversary’s goal is
to recover Dt and Rt from ht. If the underlying hardware implements pre-charged logic or
if certain transitions are prohibited due to separated busses for data and addresses, the
reference state Rt can be systematically equal to 0 [BCO04, OC15]. In this case, the HD
model generalises to the HW model.

When applied to AES, a CEMA using the HW or HD model often targets the output
of the AddRoundKey and SubBytes operations in the first round of the cipher, as the secret
key is processed directly in this round [GW08, MPP16, MDM16, Mon13]. If we plug
the intermediate value from Equation 1 into the HW leakage model, the EM leakage in
function of the key and plaintext becomes:

ht = αHW (SBox(p⊕ k)) + ηt (3)

The adversary can now determine the value of ht by supplying a known plaintext to
the device under attack and analyzing traces of EM emanations captured during the first
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AES round. Recall that we define a trace as an AM-demodulated signal (i.e. a time series
of signal magnitudes) captured using an oscilloscope or signal analyzer, that characterizes
the power consumption of the device over time.

In order to determine the unknown k given ht, the adversary can construct a hypothesis
power consumption matrix Hij = SBox(pi ⊕ j) for each key byte index i ∈ {1, 2, . . . , 16}
and each possible key value j ∈ {0, 1, . . . , 255}. This matrix essentially gives all power
consumption values ht for each possible key, assuming α = 1 and η = 0. The adversary
then calculates the Pearson correlation coefficients between the observed values for ht from
the captured EM traces and the hypothesized values from H for each key guess [BCO04,
MBTO13]. This process is repeated for each relevant time unit t, resulting in a three-
dimensional correlation matrix:

ρtij(ht, Hij) = cov(ht, Hij)
σht

σHij

(4)

Finally, the best key guess k̂ is determined by selecting the key value with the highest
absolute value2 of the correlation:

k̂i = arg max
t,j

(|ρtij |) (5)

2.4 Machine Learning and Deep Learning attacks on AES
In ML and DL side-channel attacks, the objective of finding the secret key k given a
collection of traces is formulated as a supervised classification problem. Analogous to the
classic Template Attacks (TAs), solving this problem involves two phases: a training phase
and testing phase.

In the training phase, a “training set” of EM traces is first collected from the reference
device. Here, each trace or “training example” is labeled with a corresponding “class label”.
The class label is what the algorithm will be trained to predict and can be chosen in several
ways. One possibility is to consider each possible key byte value as a separate class, which
yields 256 class labels. Another possibility could be to consider the HW of each key byte
value, resulting in only 9 class labels (all possible Hamming weight values of a single byte).
The ML algorithm is subsequently trained, which means that a model is parameterised
such that a certain predetermined loss function (e.g. the cross-entropy loss) is minimized.

After training is complete, a “test set” of EM traces is collected from the targeted
device during the testing phase. Since the key bytes are unknown in this case, only the
EM traces are available. The ML algorithm will output the probability of each EM trace
belonging to a certain class, based on the parameters learned by the model during the
training phase. The accuracy of this prediction largely depends on the quality of the
training data, but also on the chosen type of ML model, hyperparameters, optimizer,
and loss function. In this paper, we will primarily focus on simple ML models such as
Multi-Layer Perceptrons (MLPs). We will show that even such simple models outperform
the state-of-the-art models from previous works when using our approach, which will be
detailed in Section 3.

2.4.1 Multi-Layer Perceptrons

The architecture of MLPs consists of layers of interconnected processing units, called
perceptrons or neurons. Such layers are also called “fully connected” layers. Each neuron
in a layer has an associated set of input values, weights, a bias term, and activation
function. The output of a single neuron is determined by:

2The absolute value of the Pearson correlation is considered, since it does not matter whether the
correlation between the leakage and a certain key byte is positive or negative.
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a1 = g(xw + b1) (6)

In this equation, x is a tensor of input features (e.g. trace samples), w is the tensor of
weights associated with each input feature, b1 is the bias term, and g(x) is the activation
function. Neurons can be stacked together to form layers, such that the output becomes:

A[l] = g(A[l−1]W [l] + b[l]) (7)
A[0] = X (8)
A[nl] = Ŷ (9)

where l ∈ {0, 1, . . . nl} indicates the layer index3. Note that we define the first activations
A[0] as simply the input features X, and the final activations as the output predictions of
the neural network, denoted as Ŷ .

2.4.2 Convolutional Neural Networks

In Convolutional Neural Networks (CNNs), two additional types of layers are introduced:
convolutional layers and pooling layers [MPP16]. Here, the convolutional layer is a
layer that performs a series of convolution operations on its inputs. The weights of the
convolution kernels or “filters” are learned by the optimizer algorithm. These filters act
as feature detectors for the next layers that can be useful across the entire input [LB95].
At the same time, less weights need to be trained since the size of the filters is typically
smaller than the number of input features itself.

Convolutional layers are usually followed by pooling layers, which reduce the resolution
of the inputs by performing a local averaging (average pooling) or local maximum (max
pooling) and a subsampling operation [LB95]. This operation makes CNNs more robust to
small input shifts and deformations compared to MLPs [CDP17, LB95]. Figure 1 shows
an example of a CNN with multiple convolutional and pooling layers. Deeper layers are
capable of detecting more complex features of the input due to their larger receptive field.
At the end of the CNN, a series of fully connected layers follows, which uses the features
detected by the convolution filters to determine the output of the model.

2.5 The ASCAD dataset
The ASCAD dataset was introduced by Prouff et al. in [PSB+18] for the purpose of
providing a benchmark to evaluate ML and DL techniques in context of side-channel at-
tacks. The dataset consists of three separate HDF5 files: ASCAD.h5, ASCAD_desync50.h5,
and ASCAD_desync100.h5. Each file contains 60,000 EM traces (50,000 training / cross-
validation traces and 10,000 test traces) captured with a sensor attached to an oscilloscope
sampling at 2 GS/s. The traces contain 700 samples of the EM radiation emitted by
an ATMega8515 device during the execution of the first round of a software AES imple-
mentation. The AES implementation is secured against first-order side-channel attacks
with the masking technique (see Section 2.2). Traces in the ASCAD.h5 file have been
time-aligned in a preprocessing step, whereas the traces in ASCAD_desync50.h5 and
ASCAD_desync100.h5 have been shifted with a maximum jitter window of respectively 50
and 100 samples [PSB+18]. Besides EM measurements, the ASCAD authors have provided
the source code of the models used in their work. In Section 3.6.1, we will compare these
models to our Correlation Optimization (CO) technique.

3The index starts from 0 because by convention, the input layer is not counted as an actual layer.
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Figure 1: Example of a simple 1D convolutional neural network architecture.

3 Correlation Optimization
When performing a CEMA attack as described in Section 2.3, recall that the adversary
constructs the matrix ρtij which gives the correlation coefficients of all key byte hypotheses
for each time unit in the trace. Then, the hypothesis with the highest correlation to the
power consumption traces is selected as the most likely true key byte. Note that this
correlation is determined by only one time unit for each trace, i.e. the samples at other
time units are discarded. However, some of these discarded samples are correlated to the
correct hypothesis, albeit to a lesser degree.

This observation raises the question of how information from multiple samples can be
combined in order to improve the efficiency of CEMA. Since the leakage itself depends on
the input plaintext, key, and complex electromagnetic interactions governed by Maxwell’s
equations in the underlying hardware, the samples that contain useful information may
not occur at the same time units over multiple traces. Measurements are also noisy (due
to interference and fading effects) and highly dimensional (in terms of samples per trace),
which complicates the issue further. Although classic TAs consider multiple time units as
well [CRR02], they are not suited for high-dimensional data [CDP17, LPMS17].

We now introduce our approach, called “Correlation Optimization”, which aims to
address the aformentioned issues by exploiting the information leakage from multiple
samples. To this end, we consider the selection of “good” samples as a ML optimization
problem. That is, given an input of trace samples x(i) = {x(i)

1 . . . x
(i)
nx} ∈ X with i ∈

{1, 2, . . . nm}, we would like to determine which encoding of samples ŷ(i) ∈ Ŷ can be
obtained such that ρ(Ŷ , Y ) is maximal. Here, the term encoding refers to an arbitrary
function φ of the input features, i.e.:

ŷ(i) = φ(x(i)) (10)

Observe that the above optimization problem aligns well with the problems from
domains such as face recognition and face verification, where the ML model matches
encodings of faces rather than predicting a class probability for each face4 [SKP15]. Since
in these domains ML models achieve state-of-the-art performance, we will apply similar
techniques in our approach.

4To understand why, note that when given a database of millions of faces, it would be infeasible to
train a model with a one-hot encoded class label assigned to each of the faces.
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3.1 The correlation loss function
Recall that we would like to find an encoding of input samples ŷ = {ŷ(1), . . . , ŷ(nm)} such
that ρ(Ŷ , Y ) is maximal. To this end, a loss function must be defined that can be evaluated
by an optimizer algorithm in order to train the parameters of our ML model. Ideally, this
loss function should be large when there is no linear correlation between Ŷ and Y , and
zero when the correlation is maximal. For a tensor of key bytes yk = {y(1)

k , . . . , y
(nm)
k } at

index k ∈ {1, 2, . . . nk} and the corresponding tensor of encodings ŷk = {ŷ(1)
k , . . . , ŷ

(nm)
k },

we define the loss function as:

L(ŷk, yk) = 1− cov(ŷk, yk)
σŷk

σyk
+ ε

(11)

=
∑nm

i=1[(ŷ(i)
k − ŷk)(y(i)

k − yk)]√∑nm

i=1(ŷ(i)
k − ŷk)2

√∑nm

i=1(y(i)
k − yk)2 + ε

(12)

Here, ε is a small value (e.g. 10−15) introduced to prevent division by zero. If we
assume that ŷk and yk are mean-normalized, Equation 12 can be converted to a more
convenient vector form:

L(ŷk, yk) = 1− ŷk · yk

‖ŷk‖ · ‖yk‖+ ε
(13)

In case we want to simultaneously train the ML model for all values of k, a cost
function5 can be defined as follows:

J(ŷ, y) =
nk∑

k=1
L(ŷk, yk) (14)

Observe that the maximum value of the cost function J is 32 in the worst case (when
all correlations are −1), and 0 in the best case (when all correlations are 1).

3.2 Evaluation methodology
For the evaluation of our CO technique, we will use the same methodology as Prouff et al.,
so that an objective comparison can be made. As such, our ML models will be trained to
attack the third key byte of the masked AES implementation from the ASCAD database
(see Section 2.5 for a description of this dataset). The implementation of these models was
written in Python, using the library “Keras” [C+15] with a Tensorflow backend [AAB+15].
All source code, scripts, and data used to generate the figures is available on Github at
https://github.com/rpp0/correlation-optimization-paper.

3.2.1 t-fold cross-validation

Unless specified otherwise, each ML model was evaluated with a 10-fold cross validation,
using a train and test split of respectively 45,000 and 5,000 traces. Hence, we first train
a model from scratch with 45,000 random traces, and evaluate the performance of this
newly trained model on 5,000 different (unseen) traces. This process is repeated 10 times,
and finally the performance metrics are averaged to obtain a conlusion.

5In some ML papers, a loss function defines the cost for a single training example, whereas the cost
function defines the total cost. In this paper, we define the cost function as the total cost for all bytes of
the AES key instead of all training examples.

https://github.com/rpp0/correlation-optimization-paper
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3.2.2 Performance metrics

In each of our experiments, we use two metrics to assess the performance of our models:
“rank” and “confidence”. Here, we define the “rank” as the index of the correct key in a
tensor d that contains the scores assigned to a key byte ks by the model, sorted such that
di ≥ dj ∀ i, j ∈ {1, 2, . . . , 256} | i < j. For example, the score tensor can contain key byte
probabilities or correlations. More formally, we define the rank as:

rank(d) = {i− 1|di = score(ks)} (15)

Note that the lowest possible rank is 0. If we employ an optimal guessing strategy
by iteratively guessing the key byte with the next highest score in d, the rank plus one
corresponds to the number of guesses required to find the correct key. The expected number
of key guesses is called the Guessing Entropy (GE), and is commonly used to evaluate
SCA methods [KB07, OC15, Riv08, SMY09]:

GE =
K∑

i=1
iP (rank(d) = i− 1) (16)

We obtain the expected value of the number of key guesses by averaging the rank over
the 10 folds of the ML model, which we will denote as the “mean rank” in the coming
figures. The “confidence” is then defined as the score difference between rank 0 and rank
1 or equivalently, as the distance between the maximum score in d and the next highest
score in d [MBTO13]:

confidence(d) = d1 − d2 (17)

Analogous to the rank, we average the confidence over all 10 folds to obtain the “mean
confidence”. Although this metric is less frequently used in related works, we believe it is
useful because it gives an insight into how well the model can distinguish a singular key
byte guess.

3.2.3 Input and label preprocessing

The inputs and labels to the ML models are preprocessed during the training phase. First,
all traces are split into mini-batches of 512 traces before being fed to the network. This
removes the requirement of having to load the entire dataset in memory, at the cost
of decreased performance since multiple iterations are now needed to process the entire
training set. Note that if the mini-batch size is too small, its correlation loss might not
be representative for the entire training set, and it may fail to converge as a result. We
emperically determined 512 traces to be a good value for the mini-batch size for the
ASCAD dataset.

Second, the true labels y are preprocessed such that y(i)
s = HW (SBox(p(i)

s ⊕ k(i)
s )),

where s is the key byte index and i is the training example index. It is important to
note that we do not supply the variable AES masking values during the training phase:
an encoding that correlates the EM radiation directly with the corresponding key byte
will automatically be learned by the model. Further, as we will discuss in Section 3.4.4,
assuming the Hamming Weight power consumption model is not necessary, but will reduce
the required training time and complexity of the model architecture. Finally, the training
example input features x(i) are simply equivalent to the raw samples of trace i, unless
specified otherwise.
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Figure 2: Mean rank based on a 10-fold cross-validation of the time-domain CO identity
encoding function in relation to the number of validation traces used for a CEMA attack.
The CEMA attack is unsuccessful even if all 60,000 traces are utilized, and the confidence
in the guessed key bytes is low, ranging from 0.001 to 0.005.

3.3 Time-domain CO
Using the correlation loss function defined in Section 3.1, an encoding function φ that
maximizes Equation 4 can be learned by the ML model. In this section, we will discuss
the performance of the encoding function if we use time domain samples as its input
features. To this end, we first train the ML model for 100 epochs on the three ASCAD
datasets. Then, we generate the encodings for each of the traces using the trained model,
and perform a CEMA attack on these encodings.

3.3.1 Identity function

In order to establish a performance base line, we first consider the case where φ is the
identity function, i.e. ŷ = {x1, x2, . . . , xm}. This is equivalent to performing a regular
CEMA attack on the EM traces as described in Section 2.3. Since there are no weights
or other parameters to learn, we use all 60,000 available traces for the evaluation of the
model. The results of this evaluation are shown in Figure 2.

As expected, the standard CEMA attack is not successful in guessing the true key
due to the masking countermeasure that was implemented (see Section 2.2). Although
the mean rank does seem to decrease slightly for ASCAD_desync50 and ASCAD_desync100
when more traces are considered, note that the confidence is low for each dataset. This
indicates there is no clear difference between the best key guess and the second best key
guess, and that more traces would therefore be needed to obtain a reliable result.

3.3.2 Single-layer MLP

When using a single-layer MLP architecture for CO, we essentially let the learning algorithm
determine a linear combination of time-domain samples that, when passed through a
nonlinear activation function, results in a maximal correlation with the correct key for the
entire training set. The output of the MLP is:

Ŷ = g(XW + b) (18)
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ŷ16

ŷ3
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Figure 3: The single-layer (a) and two-layer (b) MLP architectures used in our paper for
CO. Only connections to the output for key byte 3 (y3) are shown for clarity.

The architecture is visualized in Figure 3 (a). In practice, we add a batch normalization
layer before the activation function to speed up the learning algorithm [IS15]. As the
activation function, we chose the leaky ReLU activation in order to mitigate the occurrence
of zero-gradients [MHN13].

Note that the CEMA attack will be performed on a single output encoding sample,
determined by the parameters learned by ML model. The mean rank and the confidence
after training on 45,000 traces for 100 epochs and evaluating on a validation set of 5,000
different traces is shown in Figure 4.

Clearly, the model has learned an improvement over the identity function: a mean rank
of 1 is achieved after 4,960 traces even though we used only 5,000 traces for the CEMA
attack instead of 60,000. It should be noted that a mean rank of 0 can be achieved if more
traces were to be added to the validation set, though we only show the first 5,000 traces
for a fair comparison with the other experiments and related works.

3.3.3 Two-layer MLP

Although single-layer MLPs are intuitive in the sense that they essentially learn a single
weight for each sample in a trace, they do not allow for learning complex encoding functions.
Ideally, we would like to learn dependencies between samples as well. To achieve this, a
more complex architecture can be used, such as an MLP with a hidden layer as shown in
Figure 3 (b). The output of the model then becomes:
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Figure 4: Mean rank based on a 10-fold cross-validation of the time-domain single-layer
MLP CO model in relation to the number of validation traces used for a CEMA attack.
Compared to the identity function, an improvement can be observed for the ASCAD dataset:
a minimum mean rank of 1 is obtained after 4,960 traces. However, the mean confidence
in the guessed key bytes is still low, ranging from 0.003 to 0.005. For the desynchronized
datasets, no improvement is observed.

Ŷ = g(g(XW [0] + b[0])W [1] + b[1]) (19)

Again, we add batch normalization layers to speed up training and perform a CEMA
attack on the encodings of 5,000 traces after training on 45,000 traces. The result is shown
in Figure 5. With this model, we obtain a very encouraging result for the ASCAD dataset:
the model has learned to defeat the masked implementation of AES and requires only
around 1,000 traces to achieve a mean rank of 0. Furthermore, the confidence after 5,000
traces is an order of magnitude higher compared to the single-layer MLP.

Unfortunately, for the ASCAD_desync50 and ASCAD_desync100 dataset, the model is
not able to learn a meaningful encoding. This is to be expected, as MLPs are very sensitive
to translations of the input features [LB95]. Introducing deliberate clock jitter to the
hardware of a device running AES would therefore be an effective countermeasure against
time-domain CO.

3.4 Frequency-domain CO

As evidenced in Section 3.3, shifting traces in time to cause misalignment can be an
effective mitigation against CEMA attacks. Cagli et al. discuss several methods to mitigate
the issue of misalignment in their work: increasing the number of side-channel acquisitions,
applying realignment techniques, and using CNNs [CDP17]. However, another possibility
is to consider traces in the frequency domain [GHT05, GW08, Mon13], as first proposed
for Differential Electromagnetic Analysis (DEMA) attacks by Tiu in [Tiu05]. Inspired by
this approach, we studied the effectiveness of CO in the frequency domain. To this end, we
first preprocess each of the traces by applying a 700-point Fast Fourier Transform (FFT)
and taking the magnitude of the result, discarding the phase information.
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Figure 5: Mean rank based on a 10-fold cross-validation of the time-domain two-layer MLP
CO model in relation to the number of validation traces used for a CEMA attack. The
CEMA attack successfully finds the correct key for the ASCAD dataset after 800 traces with
a mean confidence of 0.038, which rises further to 0.10 as more samples are included in the
validation set. However, the attack fails on the desynchronized datasets ASCAD_desync50
and ASCAD_desync100.

3.4.1 Identity function

Similarly to our approach for the time-domain CO, we first consider the case where φ
is the identity function in order to establish a baseline for frequency-domain CO. Thus,
we have ŷ = abs(FFT ({x1, x2, . . . , xm})) as the output of the model for a single training
example.

The result of performing a CEMA attack on all 60,000 traces is shown in Figure 6. Here,
the mean rank is better compared to the time-domain CO identity function experiment:
the mean rank for ASCAD_desync100 reaches zero at 51,000 traces. This indicates that
there is a single frequency component that, when analysed, allows us to defeat the masked
AES implementation without CO. However, the confidence for each dataset is still low,
and many traces are required for the CEMA attack to succeed.

3.4.2 Single-layer MLP

Next, we consider linear combinations of the FFT frequency bins passed through an
activation function. We use the same encoding function φ as for the time-domain single-
layer MLP model from Section 3.3.2. Figure 7 shows the mean rank and the confidence of
a CEMA attack on the encodings of 5,000 traces, after training on 45,000 traces for 100
epochs.

The improvement over the identity function is similar to what we observed for time-
domain CO: only 4,840 traces are required to obtain a mean rank of 0, with a mean
confidence of 0.008.

3.4.3 Two-layer MLP

Using an MLP with a hidden layer allows the model to learn more complex relationships
between frequency bins of the FFT. Again, we use the same encoding function φ as in
Section 3.3.3. The result after evaluation of the model is shown in Figure 8. Observe that
the model is now successfully able to learn a meaningful encoding function for all of the
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Figure 6: Mean rank based on a 10-fold cross-validation of the frequency-domain CO iden-
tity encoding function in relation to the number of validation traces used for a CEMA attack.
The CEMA attack successfully finds the correct key for the ASCAD_desync100 dataset
after 51,000 traces, but the mean confidence is low (0.003). The attack is unsuccessful for
the other datasets.

ASCAD datasets. After approximately 1,000 traces, a mean rank of 0 is achieved by each
model. Furthermore, if we increase the number of traces, the mean confidence in the key
guess increases as well. We believe this is a very encouraging result, showing that CO can
be used to defeat both the masked AES and clock jitter countermeasures.

3.4.4 No model assumption

As indicated in Section 3.2.3, the true labels y(1), y(2), . . . , y(nx) are preprocessed such that
their key byte values correspond to HW(SBox(p(i)

s ⊕ k(i)
s )). Hence, we assume that the

cryptographic device leaks information based on the HW power consumption model. In the
following experiment, we determine whether the power consumption model can be learned
implicitly by the optimization algorithm. To this end, we label y(i)

s = SBox(p(i)
s ⊕ k(i)

s )
so that the label values correspond to the intermediate value after the processing of the
SBox. Then, we perform CO with the frequency-domain two-layer MLP model on the
ASCAD_desync100 dataset. The results are shown in Figure 9.

Compared to when a HW model was assumed (see Section 3.4.3), the correct key
is guessed around 1,200 traces instead of 1,000 traces. Furthermore, the confidence is
slightly lower, with 0.045 compared to 0.066. We conjecture that this slight decrease in
performance is caused by the added complexity of learning the HW function.

3.5 Low-cost CEMA
The ASCAD dataset was recorded using an expensive oscilloscope and a sample rate of
2 GS/s. Since the frequency-domain CO from Section 3.4 showed promising results for
noisy and unaligned data, we also investigated the effectiveness of the technique when using
lower-cost hardware such as an SDR. To this end, we recorded a custom dataset of EM
traces transmitted by an Arduino Duemilanove running a software AES implementation,
using a Universal Software Radio Peripheral (USRP) B200 SDR sampling at 8 MS/s on
the 64 MHz band with a TBPS01 EM probe and wideband amplifier. The experimental
setup is shown in Figure 10.
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Figure 7: Mean rank based on a 10-fold cross-validation of the frequency-domain single-
layer MLP CO model in relation to the number of validation traces used for a CEMA
attack. Again, an improvement compared to the identity function can be observed: a
mean rank of 0 is obtained for the ASCAD dataset after only 4,840 traces, with a mean
confidence of 0.008. The attack is unsuccessful on the other datasets.

3.5.1 Dataset properties

The custom dataset consists of two sets of traces: a training set of 51,200 traces and
validation set of 32,768 traces. Each trace contains the instantaneous amplitude of the I/Q
signal provided by the SDR. No further preprocessing was performed. While recording
the training set, the Arduino continuously performed AES encryption with a random key,
such that one trace contains the EM leakage of one random encryption operation. The
validation set contains EM traces of AES encryptions performed with a fixed key. This
ensures that the ML model will not overfit on one specific key during training, and that
a sufficient number of traces is available to perform a CEMA attack during validation.
We stress that the fixed key used during the validation step is never encountered during
training.

3.5.2 CO results

At first, we directly used the MLP architecture from Section 3.4.3 to train the model on
the 51,200 random-key training examples. This approach turned out to be unsuccessful:
the model heavily overfits on the noise that is present in the training examples after each
subsequent epoch, and does not learn a generalizable relation between the key byte value
and EM leakage. As a result, the training set loss is very low, whereas the validation set
loss is high.

In order to resolve this issue, we artificially generated more training data by applying
the data augmentation technique. More specifically, for each of the training examples, we
set the starting offset of the sample window for which the FFT is calculated to a random
offset between 0 and 500 time units. Indeed, with this approach, a training example will
be time-shifted slightly differently for each epoch, which reduces the overfitting of the
MLP model. The result after training for 100 epochs on the augmented training set is
shown in Figure 11.

Observe that after 22,000 traces, the CEMA attack successfully determines the correct
key, without performing any alignment or filtering of the EM traces and with a SDR
sample rate of only 8 MS/s.
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Figure 8: Mean rank based on a 10-fold cross-validation of the frequency-domain two-layer
MLP CO model in relation to the number of validation traces used for a CEMA attack.
The correct key is guessed for each dataset after approximately 1,000 traces. Adding more
traces to the validation set further increases the mean confidence to 0.099, 0.092, and 0.066
for respectively the ASCAD, ASCAD_desync50 and ASCAD_desync100 datasets.

3.6 Discussion
3.6.1 Comparison to previous approaches

Previous works in context of applying ML to SCA have in common that they all use a
model optimized by minimizing the mean cross-entropy loss over the training set. Thus,
for each training example, the probability distribution P (ŷ(i) = v | x(i)) is calculated for
each intermediate value v ∈ {0, 1, . . . 255} and its cross-entropy with the one-hot encoding
of the true intermediate value y(i) is determined. Intuitively, this can be regarded as a
Simple Electromagnetic Analysis (SEMA) attack on a single trace, since no information
from other traces is used.

Although the above approach has been demonstrated to achieve reasonable results in
context of SCA, we believe it is more suited to image classification applications, where
only one image is often available that needs to be classified. In SCA, there is the need for
extracting information from multiple examples, due to the noisy nature of EM traces. CO
achieves this by optimizing the correlation coefficient of a mini-batch with the true key byte
value. This may explain why even a simple two-layer MLP architecture performs better
than the best_cnn model from the ASCAD paper; their CNN is unable to determine the
correct key for the ASCAD_desync100 dataset (see [PSB+18, p. 39]). We confirmed this
result by retraining their best_cnn model for 100 epochs and performing a 10-fold cross-
validation with the ASCAD datasets, analogous to the experiments previously discussed
in Sections 3.3 and 3.4. The results of this experiment are shown in Figure 12.

3.6.2 Complexity

The most complex model we considered is the two-layer MLP model from Section 3.4.3.
This model contains 180,741 parameters and took 271 seconds to train for 100 epochs on a
Dell Latitude laptop with quad-core Intel Core i5-7300U CPU at 2.60 GHz (no GPU). By
comparison, the ASCAD best_cnn model contains 66,652,544 parameters. In addition,
the presence of convolutional layers further increases the complexity of this model. As a
result, training the ASCAD CNN models for 100 epochs with this architecture takes 5.21
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Figure 9: Rank and confidence of the frequency-domain two-layer MLP CO model in
relation to the number of validation traces used for a CEMA attack. The power consumption
model is not assumed; it is learned by the model. The correct key for the ASCAD_desync100
dataset is guessed after approximately 1,200 traces with a confidence of 0.001, and increases
further to 0.045 after 5,000 traces.

days per model on the same machine.

3.6.3 Hybrid CO and round detection

In our custom dataset containing the Arduino EM traces, each trace contains a variable
number of samples, and the only assertion is that precisely one AES encryption is performed
within the trace. In Section 3.5, we demonstrated that it is not required to align the traces
in a preprocessing step due to the frequency-domain approach. The only requirement is
that the first round of the AES encryption is contained within the FFT window. However,
the larger the FFT window, the more irrelevant information will be included in the power
spectrum and hence, the more traces are required to successfully perform a CEMA attack.
This raises the question of how the FFT window can be optimally selected.

We did not consider the optimal selection of FFT windows in this paper, but leave a
number of interesting pointers for future work. A first possible approach is to let the neural
network determine a boundary of where the first AES round starts. This could be achieved
with an algorithm such as YOLO [RDGF16], which automatically determines bounding
boxes of certain objects (in this case an AES round). A second approach could be to
perform a “hybrid” CO that takes place both in the time domain as well as the frequency
domain. For example, by calculating a spectogram with overlapping FFT windows of the
entire trace and finding the spectogram section with the highest correlation or by using
wavelet transforms.

4 Related works
The first study of using ML in SCA was conducted by Hospodar et al. in 2011, where a
power analysis of a software AES implementation without countermeasures was performed
using a Support Vector Machine (SVM) [HGDM+11]. In 2015, Lerman et al. compared
ML techniques with the classic TA and show that ML are especially interesting when the
number of useless samples in a leakage trace increases and/or when the training set size
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Figure 10: Experimental test setup for the low-cost CEMA attack. A Tekbox TBPS01
EM probe is positioned near the VCC pin of the ATmega 328, and is connected to the
USRP B200 SDR through a 40 dB wideband amplifier.

is small. Maghrebi et al. apply DL techniques in side-channel context, and show that
DL-based attacks are more efficient than ML-based and template attacks [MPP16]. This
observation was recently nuanced by Picek et al. who suggest that ML techniques can
perform on a similar level or even outperform DL techniques depending on the level of
noise, number of measurements and number of features [PSH+18]. Cagli et al. studied
the robustness to misalignment of CNNs for an unmasked AES implementation [CDP17].
A comprehensive study regarding the application of DL algorithms in context of EM
side-channel attacks was conducted by Prouff et al. in [PSB+18]. They also introduced
the ASCAD benchmark database, which was used in extensively Section 3 to evaluate our
approach.

The use of frequency-domain features in SCA was pioneered by Tiu et al. in 2005 [Tiu05].
A similar technique was used in context of CPA in [SDB+10] to mitigate misalignment
problems. Barenghi et al. performed CEMA attacks on intervals of the FFT bins of the trace
in order to determine leaking frequencies [BPT11]. This technique was further extended and
explored in context of performing SCA using SDRs by Montminy et al. [MBTO13]. Other
techniques to find the most leaking frequencies are investigated in [MRG+10, TOT+14].
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Figure 11: Rank and confidence for a single model trained on the custom dataset, after
performing a CEMA attack on its encodings. The correct key is found after 22,000 traces.

5 Conclusion
We introduced a novel approach to improve CEMA attacks, called Correlation Optimiza-
tion (CO). In this approach, a ML model is trained to learn “encodings” of a set of EM
traces, which are subsequently used in a CEMA attack. These encodings are optimized
such that their Pearson correlation with the secret key is maximal, by minimizing the
correlation loss function defined in this paper. This is in contrast to previous works, where
models are trained to classify individual EM traces into secret-key byte, intermediate, or
Hamming values by optimizing the mean cross-entropy of the class probabilities.

The identity function (regular CEMA attack), one-layer and two-layer MLP models
that we considered in this paper were evaluated on the ASCAD benchmark datasets for
SCA [PSB+18] in both the time and frequency domain. Our best model, the frequency-
domain two-layer MLP, is on average able to find the correct key byte after considering
1,000 traces from the ASCAD, ASCAD_desync50, and ASCAD_desync100 datasets. We believe
this is a significant improvement over the work of Prouff et al., where TA attacks, their
“MLP best” model and “CNN best” model all failed to find the correct key byte for the
ASCAD_desync100 dataset after considering 5,000 traces.

In addition to evaluating our models on the ASCAD datasets, we examined their
performance on a custom dataset as well. The custom dataset contains unprotected
AES EM leakage traces of an Arduino Duemilanove recorded with a USRP B200 SDR
sampling at 8 MS/s on the 64 MHz band. Even though the traces are highly dimensional
and noisy, our frequency-domain two-layer MLP model is able to find the correct key
after 22,000 traces, without requiring prior trace alignment. Finally, in order to allow
for reproducing the results that were presented in this paper, all used datasets and code
have been published to Github at the following location: https://github.com/rpp0/
correlation-optimization-paper.

6 Future work
In future work, several aspects regarding CO can be investigated further. First, our
technique can be evaluated in other contexts (e.g. other benchmark datasets, hardware
or side-channels) in order to confirm whether the encouraging results obtained in this
paper generalise to these cases as well. Second, we considered only simple ML models

https://github.com/rpp0/correlation-optimization-paper
https://github.com/rpp0/correlation-optimization-paper
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Figure 12: Mean rank based on a 10-fold cross-validation of the best_cnn model from the
work of Prouff et al. [PSB+18], in relation to the number of validation traces used for a
classification attack. Their model is able to determine the correct key for the ASCAD dataset
after 1,910 traces, but performs poorly on the ASCAD_desync50 and ASCAD_desync100
datasets compared to our best CO models.

based on the MLP. Although this is sufficient for the CEMA attack to succeed on the
ASCAD datasets and our custom dataset, more advanced models such as deep CNNs may
be required in other scenarios. Additionally, the configuration space of architectures and
hyperparameters is very large, and a better configuration may be determined in future
work to further improve the results presented in this paper.

As mentioned in Section 3.6.3, we believe that both a combination of time and frequency-
domain features, as well as automatic detection of an AES round using ML or DL could be
interesting avenues for future research. We are currently investigating these ideas, along
with the application of CO to other cryptographic algorithms besides AES.
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