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Explicit and Implicit Information Leakage
in Wireless Communication

Abstract

Information security vulnerabilities in wireless communication are caused
by unforeseen behavior of a system as a result of flawed protocol designs or
implementations. Such vulnerabilities may be exploited by an adversary in order
to break the confidentiality, integrity and availability provided by a system, or
compromise the privacy of its users. In this thesis, we focus on one particular
class of vulnerabilities, namely information leakage, in context of two wireless
protocols: Wi-Fi (802.11) and LoRa. With over 454 million Wi-Fi hotspots and
500,000 LoRa gateways forecast to be operational by 2020, these protocols are
amongst the most popular wireless protocols in use at the time of writing. We
will distinguish between and explore two types of information leakage, which we
refer to as explicit information leakage and implicit information leakage.

In the first main part of the thesis we will examine explicit information leakage,
which stems from unintended flaws in the design or implementation of wireless
protocols. More specifically, we will reveal a vulnerability in the 802.1X PEAP
protocol, which is used as an authentication method in WPA2-Enterprise net-
works. This vulnerability allows an adversary to relay challenge responses from
a LEAP handshake as valid credentials for a PEAP handshake, thereby gaining
unauthorized access to the network. We show that this attack works on all Apple
devices prior to iOS 8, OS X Yosemite and Apple TV 7. Next, we look at the
MAC-layer frame aggregation mechanism introduced in 802.11n, and show how
an adversary can abuse the delimiter scanning algorithm to remotely inject arbi-
trary Wi-Fi frames into an open network, even without requiring a radio. This is
achieved by crafting a specific application-layer payload that leaks to the lower
layers of the network stack when the A-MPDU delimiter is corrupted by inciden-
tal noise. We then analyze the information broadcasted in Wi-Fi Probe Request
frames, and show that such frames leak sufficient information about the trans-
mitting device to create a unique fingerprint. We show that this can be exploited
to defeat privacy-preserving measures such as MAC address randomization in a
large-scale field experiment, where data was gathered at a music festival over a
two-day period. Moreover, we introduce a number of techniques to increase the
frequency of Probe Request transmissions, for example by transmitting specially
crafted GAS Request and ADDBA Request frames. For each of the vulnerabilities



discussed in this part of the thesis, we propose countermeasures to mitigate their
impact and improve the security and privacy of users.

The second main part of the thesis looks into implicit information leakage, which
originates from measurable side effects of a software or hardware implementation
of a protocol. As a first example, we show how frequency offset errors introduced
by the hardware of LoRa devices leak sufficient information to fingerprint indi-
vidual devices on the physical layer. Complementary to this finding, we release
an open source implementation of a novel demodulation algorithm, based on the
gradient of the instantaneous frequency of a LoRa signal, that allows to synchro-
nize to a LoRa signal while preserving any present frequency offset errors. Using
this algorithm, we capture 8 datasets of LoRa symbols using an SDR and analyze
the classification accuracy under various environments when using SVM, MLP
and CNN classifiers. We also perform a brief experiment with zero-shot classi-
fication techniques, where LoRa devices can be classified without having access
to prior training data about these devices. Finally, we consider the electromag-
netic (EM) side-channel leakage of the AES cipher, which is used by both Wi-Fi
and LoRa. In particular, we examine the application of machine learning and
deep learning on EM traces leaked during the execution of AES, and propose a
novel methodology to find the secret key based on these traces. Our methodol-
ogy requires only a few minutes of training time on commodity hardware due to
a less complex architecture, while outperforming state-of-the-art deep learning
algorithms on the ASCAD benchmark dataset. Additionally, we show that the
requirement of having to align signals prior to performing a CEMA attack can be
removed by applying our methodology in the frequency domain of the captured
EM traces, and provide a practical proof-of-concept by using a USRP B210 to
attack an AES implementation running on an Arduino Duemilanove.
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Complexity is the worst enemy of security.
Niels Ferguson, Bruce Schneier, Tadayoshi Kohno

1
Introduction

1.1 Motivation

Over the past decennia, the usage of wireless communication has become
increasingly ingrained in our society and day-to-day lives. This is evidenced by
recent market surveys, which indicate that the global wireless connectivity mar-
ket is expected to continue to grow from an estimated $18.73 billion in 2016 to
$34.71 billion by 2023 [254], while the total number of mobile users worldwide is
forecast to reach 7.33 billion by 2023 [258]. One of the contributing factors to
this growth is the rising popularity of using mobile phones to access the internet:
statistics published by Eurostat indicate that between 2014 and 2018, the per-
centage of individuals in the European Union that used a mobile phone to access
the internet has increased from 44% to 67% [84]. Another factor is the onset of
the Internet of Things (IoT) trend, i.e. the provisioning of internet connectivity
to everyday devices. This benefits both companies by allowing, e.g., remote up-
dating and data mining, as well as customers through for example new features
and enabling remote control. In this category we find devices ranging from wear-
ables such as activity trackers and smart watches to “smart home” devices such
as smart speakers, doorbells and thermostats. Finally, Wireless Sensor Networks
(WSNs) and other Machine to Machine (M2M) applications have found their role
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in optimizing various aspects of the automotive [64, 211], aviation [125, 287] and
farming industries [147, 182].

A natural consequence of the continued proliferation of wirelessly connected de-
vices is the emergence of a wide spectrum of novel use cases and hence, new and
more complex (amendments to) wireless protocols had to be designed. While
emergent protocols for consumer end devices remain mostly focused towards
achieving higher data rates with technologies such as Wi-Fi 6 (802.11ax) [277]
and 5G New Radio (NR) [1], other protocols are oriented more towards low power
consumption and long-range communications. Amongst the protocols introduced
specifically for the latter use case, which are coined under the umbrella term
“Low-Power Wide-Area Network (LPWAN) protocols”, we can find for example
LoRa [156], Sigfox [241], LTE-M [2], Wi-Fi HaLow [278] and Weightless [274].

For whichever purpose a wireless protocol is designed, it remains crucial to ensure
the security of the data it transports and to cater to the privacy of users. The
rising popularity of mobile devices, and hence of wireless communication, results
in more data being transmitted over the air. Factoring in the overall digitization
of society, it is safe to assume that this data will also contain more sensitive
information. For example, think of implanted medical devices [162] or wirelessly
connected systems on an airplane [228]. Naturally, we don’t want an adversary to
be able to read medical data or manipulate messages sent to airplane systems; the
outcome could be disastrous. The main security properties that are desired in a
communication system can be summarized through the Confidentiality, Integrity,
and Availability (CIA) triad. Here, “confidentiality” pertains to keeping the data
secret, “integrity” is related to preventing modification and “availability” refers
to making sure users can access their data at all times.

Outside of the CIA triad, another desirable property is ensuring the privacy
of the user. While the term “security” refers to the technical means used to
protect communication, “privacy” is a much broader concept that also concerns
metadata of the communication, such as knowing who is communicating when,
with whom, from what location, by which means and under what circumstances.
In legal and societal contexts, privacy can furthermore relate to the nature of
the communicated data itself, how this data is stored and whether and how it is
shared with third parties. For example, a smartphone application can set up a
secure Transport Layer Security (TLS) channel to a web server, but an adversary
could still apply “traffic analysis” techniques to infer information about the user,
hence compromising their privacy [77, 166, 190, 256].
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1.2 Problem statement and research goals

To determine whether a wireless protocol invests sufficiently in a users’ data se-
curity and privacy, it must be carefully scrutinized by security researchers. As
the domain evolves, previously unknown attack surfaces or attack techniques may
be discovered and precisely for this reason, the defenders (the protocol designers
or implementers) are always at a disadvantage compared to the attackers (secu-
rity researchers). Especially newer protocols, which have typically received only
limited peer review from the information security community, are more likely
to contain hidden flaws1 (see for example [267]). Moreover, compared to wired
networks, there are more challenges to be considered as adversaries are inher-
ently more powerful: they can intercept, modify or jam any messages exchanged
between the parties engaged in a wireless protocol. For LPWAN protocols, there
is the additional challenge of providing security and privacy while keeping the
power consumption low. Provided that power consumption is coupled with com-
putational complexity, we logically arrive at the performance-security tradeoff,
which is well-known in the information security domain. Since creating a com-
putational advantage necessitates at least some penalty on the performance of
a system, performance and security are fundamentally in conflict, and a good
tradeoff that works well in practice must therefore be determined.

The question now remains of how to assess the level of security and privacy
provided by a given protocol. In the field of cryptography, the security that a
cryptographic primitive provides is approximated as a number of bits, which in-
dicates the number of steps or work that an adversary has to do for an attack [85,
p. 36]. For example, a secure n-bit cryptographic hash function is said to provide
only n/2 bits of security, since an adversary would need to perform 2n/2 steps on
average in order to perform a birthday attack. While the level of security that
cryptographic primitives provide can be objectively measured by analyzing their
mathematical properties, there is no standard objective measure for measuring
the overall security and privacy of a system as a whole. An individual component
of the system may be proven secure on itself, but turn out to be broken when used
in conjunction with other components in a protocol. This may occur, for exam-
ple, due to certain complex and unintended interactions that went unaccounted
for in the protocol design or in the implementation of the protocol, ultimately
leading to a vulnerability.

When unintended behavior of a protocol causes a vulnerability that is sufficiently

1Although it should be noted that by nature of the security cat-and-mouse game, even
extensive peer review does not guarantee security under practical circumstances.
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severe2, it can be exploited by an adversary to mount an actual attack on a pro-
tocol. Examples of such attacks are spoofing, replay attacks, relay attacks, user
tracking, amplification attacks, cryptographic attacks, side-channel attacks, etc.
Each of these attacks is the consequence of design or implementation vulnerabil-
ities, and affects the CIA properties of a system. A particular class of vulnera-
bilities that will be focused on in this thesis is the class of “information leakage”
vulnerabilities, which have the potential to enable many of the aforementioned
attacks. Information leakage refers to bits of information that are obtained and
exploited by an adversary in order to gain some advantage, e.g., a computational
advantage compared to performing a naive exhaustive key search (a cryptographic
vulnerability) or being able to inadvertently uncover the identity of a commu-
nicating party (a privacy issue). We will furthermore differentiate between two
types of information leakage: explicit and implicit information leakage.

The first type, explicit information leakage, is information leakage that is a
direct consequence of flaws in a protocol’s design or implementation. That is,
given a specific input, the protocol behaves in a way that was not intended by
the designer or programmer, thereby introducing an information leakage vulner-
ability. In Chapter 4, we will see an example of an explicit information leakage
vulnerability that can be exploited to perform a relay attack on the PEAP pro-
tocol. Chapter 5 demonstrates how information can leak from higher to lower
layers in the network stack due to a parsing vulnerability in 802.11. In Chapter 6
we will see an instance where explicit information leaks can lead to mass tracking
of smartphone users.

The second type, implicit information leakage, is information leakage that
manifests due to measurable side effects occurring during the execution of a pro-
tocol. In this case, the protocol itself behaves as intended by the programmer, but
the software or hardware implementation unintentionally leaks information to an
adversary. The term “implicit” should be understood as “always to be found in”:
the implicit leakage discussed in this thesis is inherently present, though whether
it can be exploited depends on the measurement capabilities of the adversary. In-
tuitively, implicit information leakage can be seen as a superset of “side-channel”
leakage that also includes non-cryptographic information leakage (for example,
device fingerprints). The concept of side channels will be reviewed in Chapter 2.
In Chapter 8 we will see an example of how implicit information leakage allows
an attacker to uniquely identify a LoRa device based on its transmitted signal
alone. Chapter 9 describes how electromagnetic radiation leaked by a CPU can
be analyzed with machine learning methods in order to determine the key used

2The severity of a vulnerability can be measured using a standardized scoring system such
as the Common Vulnerability Scoring System (CVSS) [86].
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in a cryptographic algorithm.

Both of the previously discussed leakage types are the result of behavior by a
protocol that was unintended by the designer or programmer. Although it is
trivial to test how a protocol should behave, e.g., through unit tests, it is hard to
test for how a protocol could behave. Doing so would require checking all possible
combinations of configurations and inputs, which is infeasible for many modern
protocols. This is precisely why it is important for the security community to look
for vulnerabilities: to make sure a protocol behaves only as intended, and not as
the protocol equivalent of a “weird machine”: a program that shows unintended
behavior when provided with unexpected inputs. Formal verification and tools
such as fuzzers can help to automatically discover flaws in respectively protocol
designs and implementations, but they require an a priori definition of what
unintended behavior entails exactly. Similar to how a programmer can come up
with a creative solution to make a program display some intended behavior, it
requires a human mind and creativity to reveal unintended behavior.

In light of these observations, this thesis aims to achieve the following research
goals:

RG1 (Identification) Perform a security and privacy analysis of state-of-the-
art wireless protocol designs and implementations on the Physical (PHY)
and MAC layers, with a focus on identifying information leakage in wireless
protocols.

RG2 (Exploration) Improve existing techniques or find new ways to extract
or exploit information leaks from a practical implementation of a wireless
protocol in order to get a better understanding of an adversary’s capabili-
ties.

RG3 (Remediation) Provide users and developers of wireless protocols with
datasets and tools to test for and ward against attacks that result from
newly discovered information leakage or extraction techniques, as well as
inform them about the risks of such attacks.

Throughout most of the thesis, these research goals were strived for in a sequen-
tial manner, i.e. by first identifying a vulnerability (RG1), exploring the options
of the adversary (RG2) and finally by mitigating the vulnerability and suggesting
improvements (RG3). An exception for some chapters is that RG1 had already
been performed in related work, in which case only RG2 and RG3 are con-
sidered. To avoid any confusion, each chapter will individually list its intended
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research goals. Finally, the focus of these research goals is primarily on two
popular wireless protocols, namely Wi-Fi (802.11) and LoRa. These protocols
were focused on because they are commonly deployed in practice: the number
of global Wi-Fi hotspots is estimated to reach 454 million by 2020 [59], and the
number of global LoRa gateways is estimated to climb to 500,000 by 2020 [237].
Nevertheless, many principles from the results of this research can be applied to
wireless protocols in general.

1.3 Contributions

Pursuant to the research goals listed in the previous section, this thesis brings
the following main contributions:

C1 We show that MSCHAPv1 credentials can be converted to MSCHAPv2
credentials, leading to a vulnerability in devices that support both the
LEAP and PEAP authentication protocols, which allows an adversary to
bypass authentication. We also provide two open-source tools on Github:
scapyfakeap, which aims to provide a means to more easily test for se-
curity vulnerabilities in 802.11, and peapwn, which allows to test for the
presence of the LEAP vulnerability. Finally, we suggest 5 approaches that
can be implemented to prevent exploitation of the vulnerability.

C2 We expose a vulnerability in the MAC-layer frame aggregation mechanism
featured in 802.11n and following amendments, which allows an adversary
to remotely inject frames into local, open Wi-Fi networks. A tool named
aggrinject is made available on Github that allows to test for this vulner-
ability. Finally, we propose 6 countermeasures to protect against injection
attacks.

C3 We introduce a metric based on information entropy to measure the suit-
ability of MAC-layer Wi-Fi frame bits in constructing a unique fingerprint
of the transmitting device. Based on this metric, we introduce the concepts
of “variability” and “stability” of a fingerprint.
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C4 We conduct a large-scale analysis of 200,394 Probe Requests that were
captured in a realistic setting. We then show that, based on the metric
from C3, a fingerprint can be constructed that is 80.0 to 67.6 percent
unique for 50 to 100 observed devices and 33.0 to 15.1 percent unique for
1,000 to 10,000 observed devices. Moreover, we indicate how this technique
can be used to track devices and defeat countermeasures such as MAC ad-
dress randomization, and compare with existing techniques. Furthermore,
we present 8 countermeasures to mitigate user tracking.

C5 We propose and evaluate a variety of techniques to instigate 802.11 frame
transmissions from a device, for example by broadcasting GAS Request or
ADDBA Request frames.

C6 We provide a first full description of the LoRa PHY layer by reverse-
engineering a RN2486 LoRa hardware module.

C7 We design and develop the first fully-featured implementation of a LoRa
demodulator for Software Defined Radio (SDR) using the GNU Radio
framework, named gr-lora. The demodulator implements a novel algo-
rithm for the LoRa PHY that allows to demodulate multiple channels with-
out requiring retuning of the SDR center frequency, and is open sourced
on Github.

C8 The framework from C7 is used to build a PHY-layer fingerprinting tech-
nique for LoRa devices based on a combination of supervised classification
and unsupervised clustering methods. Our technique is able to distinguish
LoRa vendor models with 99%-100% accuracy and individual devices with
59%-99% accuracy. This work was performed in collaboration with dr.
Eduard Marin from KU Leuven.

C9 We propose a novel methodology to discover and exploit implicit infor-
mation leakages originating from electromagnetic (EM) radiation using
machine learning methods. This methodology does not require prior align-
ment of EM traces and outperforms previous methods. We then evaluate
the methodology on Advanced Encryption Standard (AES) traces included
in the ASCAD dataset and a custom dataset.

C10 All datasets procured during this research have been made available to
the public domain in an anonymized format on Zenodo3. Furthermore,
the code for all tools developed to realize the above contributions has
been open sourced on Github4. The locations and descriptions of these
datasets and tools can be found in Appendix B.

3The used anonymization methods are described for each dataset at https://zenodo.org
4All code contributions can be found at https://github.com/rpp0

https://zenodo.org
https://github.com/rpp0
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These contributions were presented in 1 journal publication and 7 conference pub-
lications as the principal author. A list of all publications is given in Appendix C.
Additionally, in light of raising awareness to the public, some contributions were
also presented via non-academic channels, e.g., at the FOSDEM 2018 and 2019
conferences and in the general press (see Appendix D).

1.4 Thesis structure

The remainder of this thesis is subdivided into four main parts, where each of the
chapters can either be read sequentially or on its own. The first part, “Prelim-
inaries”, describes a number of concepts that serve as background information
for the later chapters. In Chapter 2, we will see how side-channel attacks can be
used to break implementations of cryptographic primitives, while also touching
upon a number of EM measurement, signal processing, and analysis principles.
The purpose of this chapter is to help contextualize the contributions listed in
C9. Then, Chapter 3 reviews a number of machine learning related concepts
that are referenced in both Chapter 8 and Chapter 9 of the thesis. Readers who
are already familiar with these concepts can safely skip the preliminaries.

In the second part of this thesis we focus on explicit information leakage. Partic-
ularly, in accordance with the research goals described in Section 1.2, we address
a number of protocol design issues and improvements for 802.11. Chapter 4 de-
scribes a vulnerability for LEAP and PEAP authentication in accordance with
C1. A flaw in 802.11 MAC-layer frame aggregation (C2) is explored in Chapter 5.
Contributions C3 – C5 are discussed in Chapter 6.

Next, the third part of this thesis centers on implicit information leakage. Chap-
ter 7 is a chapter that describes the analysis, design and implementation of a LoRa
demodulator for SDR, yielding C6 and C7. In Chapter 8, we will see how we use
this demodulator to detect subtle hardware differences between LoRa devices in
order to fingerprint individual LoRa devices on the PHY layer (C8). Chapter 9
describes a novel methodology to improve CEMA attacks using machine learning,
leading to C9.

Lastly, in the fourth and final part of the thesis we reflect upon the obtained
results to formulate a conclusion and present an outlook on the challenges ahead,
which could be considered in future research.



Part I

Preliminaries





Cryptography is typically bypassed, not penetrated.
Adi Shamir

2
Side-Channel Analysis

In present-day communication systems, the confidentiality and integrity of
information is primarily ensured through the use of cryptographic algorithms. At
their core, these algorithms rely on secret pieces of information, i.e. keys, known
only to the communicating parties in order to obtain a computational advan-
tage over the adversary. That is, given that the cryptographic algorithm is not
theoretically broken, it should be computationally infeasible for an adversary to
modify or eavesdrop on the communication without having access to the secret
information. However, as demonstrated in numerous previous works (see [290]
and the references therein), an adversary can infer secret information by statis-
tically analyzing physical properties of the hardware implementation during the
execution of a cipher. These physical properties, named “side channels”, can thus
unintentionally “leak” information to an adversary.

Side-Channel Analysis (SCA) refers to the practice of measuring and interpreting
leakages originating from a side channel in order to perform an attack on the
cryptosystem.



12 CHAPTER 2. SIDE-CHANNEL ANALYSIS

2.1 Types of side channels

The physical phenomena that are responsible for leaking key-dependent infor-
mation can take on widely different forms and characteristics. In the current
literature, various types of side channels have consequently been identified as
sources of potential information leakage, including:

• Seismic side-channels: Analyzing vibrations to determine keypresses, for
example using a laser [19] or gyroscope [177].

• Acoustic side-channels: Inferring keypresses from stereoscopic microphones
in a phone [177] or extracting RSA keys by analyzing the sound generated
by a device [95].

• EM side-channels: Information leaked via the electromagnetic radiation
that is emitted by various electronic components [89, 93, 94, 97, 174, 175,
201, 204, 272].

• Temperature side-channels: Information leaking through temperature fluc-
tuations of a device [39, 123].

• Power side-channels: Patterns in a device’s power consumption [37, 111,
165, 169, 181, 186].

It should be noted that the above list is non-exhaustive; new side channels may
be discovered in the future (e.g., side channels based on quantum physics). Fur-
thermore, new ways of measuring existing side channels may also be discovered,
revealing novel avenues of attack that might render existing side-channel coun-
termeasures ineffective. In this thesis, we will specifically focus on the EM side
channel.

2.2 EM side-channel leakage

During the execution of a cryptographic operation, conditional jumps based on
the key bits or computational intermediates, gate switching, and timing differ-
ences between operations can affect the power consumption of a device [37, 111,
137, 174, 181]. Since the current flows within a device in turn produce EM radia-
tion [8], it follows that the EM side-channel can leak key-dependent information
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as well. In fact, it is argued by Agrawal et al. that the EM side channel is more
powerful than the power side channel [8].

To capture EM signals, an adversary can place one or multiple near-field probes
in close proximity to a location of interest, such as the CPU voltage regulator,
power-supply pin, or the CPU itself. Leakages may also be present in the far field,
in which case wideband antennas can be used instead [43]. Actual measurements
of the EM signal can be performed using high-end devices such as oscilloscopes
and spectrum analyzers, or low-end devices such as SDRs. Once the signals have
been captured in digital format, the adversary can apply signal processing and
SCA techniques in order to identify the presence of implicit information leakage.

For the remainder of this thesis, we will refer to a single capture of an EM signal
as a trace, signal or measurement. These terms will be used interchangeably. A
single trace x consists of a finite number nx of real samples or points, i.e., x ∈ Rnx .
A collection of multiple traces will be referred to as a trace set. Finally, a set
of instructions executed to complete a certain (cryptographic) task of interest is
denoted as an operation.

2.3 Leakage detection and POI selection

Once the adversary has obtained a set of EM leakage traces from the targeted de-
vice, the question remains whether the quality and quantity of the measurements
is sufficient to perform a successful attack. Both of these aspects indeed greatly
impact the success rate of a full key recovery, which complicates the compari-
son of different attack methodologies. Let us now focus on what the “quality”
of a leakage trace entails exactly. In general, an ideal trace should exhibit the
following properties:

• High variance between operations: Performing different operations on
the targeted device should result in large differences between trace sets
pertaining to these operations. Conversely, if two operations have the same
observed leakage, they cannot be differentiated.

• Low redundancy during operations: Traces should contain only infor-
mation that is relevant to the operation itself. Any auxiliary information
that does not relate to the operation only increases the storage requirements
and computational complexity of the attack.

These properties are closely related to each other: if we can for example identify
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a number of points in a trace set that have high variance between operations,
we could discard other low-variance points to reduce the redundancy. This is
the precisely goal of Point of Interest (POI) selection, which is often performed
as a preprocessing step before an actual attack. In the following sections, we
will discuss a number of metrics for assessing the trace quality as well as their
application to POI selection.

2.3.1 Mutual information

The Mutual Information (MI) is an information-theoretic metric that was first
introduced in context of SCA by Standaert et al. in order to compare the side-
channel leakage between different implementations [253]. Let xi ∈ Rnm be a
vector containing the ith leakage point from all nm traces in X ∈ Rnm×nx and let
yj be the corresponding vector of the jth piece of key-based information (e.g. a
bit or byte of the key) from all traces. The MI then gives the mutual dependence
between the key information and leakage information as:

I(xi; yj) =
∑
i

∑
j

p(xi, yj) log2
(

p(xi, yj)

p(xi)p(yj)

)
(2.1)

The MI thus provides us with a means to measure how much each leakage point
changes if we change the key. For example, suppose an attacker is able to measure
the exact value of a CPU register where a byte of the secret key is being stored.
Since each change to this byte directly affects the measured leakage, the MI
between these two variables will be 8. On the other hand, a leakage point that
never changes for different key byte values will result in a MI of zero.

2.3.2 TVLA

Test Vector Leakage Assessment (TVLA) is a testing methodology for measuring
side-channel resistance that was introduced in [106]. Multiple variants of the
methodology exist, of which the non-specific fixed-vs-random variant is currently
considered the most popular [252] and most powerful [22]. All variants use the
statistical t-value as a basis for determining whether a device fails the test, with
a threshold value of 4.5 [22, 106].

The non-specific, fixed-vs-random TVLA takes two sets of nm measurement
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traces of length nx, F ∈ Rnm×nx and R ∈ Rnm×nx , where F contains nm traces
of fixed-key and fixed-data operations, while R contains nm traces of fixed-key
and random-data operations. Then, Welch’s t-test is performed in a point-wise
manner on the two populations as: [106]

t =
F −R√
s2R
nm

+
s2F
nm

(2.2)

where sR and sF denote the sample variances of respectively R and F , and R
and F represent their point-wise means. This operation is repeated for another
two sets of traces, and if both tests have |t| > 4.5 at the same point in time, the
device is considered vulnerable [22].

2.3.3 Principal component analysis

Given a zero-mean data set X ∈ Rnm×nx containing nm traces of length nx,
Principal Component Analysis (PCA) performs an orthogonal change of basis
such that the basis vectors point in the directions with the largest variance in
the measurement space. More formally, PCA determines a linear orthogonal
projection matrix P such that each ith row P (i) is an eigenvector of 1

nx
XTX

and then performs this projection as Y = PXT [239]. The eigenvectors are in
this case called the principal components, and they are ranked such that the first
principal component corresponds to the largest variance, the second principal
component to the second largest variance and so on.

In context of SCA, PCA dimensionality reduction has been utilized in previ-
ous works as a means to perform POI selection, e.g. in [32] and [11]. Indeed,
the properties of POIs selected through PCA align well with our earlier-defined
properties of an ideal trace: each point in the dimensionality-reduced trace has
a high variance (indicated by the diagonal of

∑
) and low redundancy (indicated

by the covariance between pairs of leakage samples). However, it is important
to note that we are mainly interested in points that have high variance between
operations, rather than points with high general variance across a trace set. For
instance, Figure 2.3.1(a) shows an example where a trace set contains one point
of high-variance noise (the x-axis), and a second point with key-dependent leak-
age of a single bit (the y-axis). In this case, PCA will select the noisy point
as the principal POI instead of the key-dependent leakage, since it has higher
variance. As such, PCA is typically applied to the mean traces corresponding
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Figure 2.3.1: Examples of two-dimensional datasets where a PCA would fail to recover
the relation between two leakage points. The red arrows indicate the basis vectors of the
projection.

to each operation [11]. Figure 2.3.1(b) and (c) show two other examples of a
similar issue when PCA is applied to a dataset with respectively a nonlinear and
non-orthogonal relation between data points.

A number of disadvantages of the technique come from its large computational
time due to the calculation of the covariances between each pair of samples in
the leakage trace [11, 208], its linear dimensionality reduction, and assumption
of orthogonal bases [239].

2.3.4 Sum of differences

Another category of POI selection focuses on the sum of differences between
traces. Here, various metrics could be used as a measure of difference.

One of the simplest POI selection methods is the Difference of Means (DOM),
proposed by Chari et al. in [50]. Here, an average trace x(o) is first calculated for
each operation o ∈ {1, 2, . . . , no} with no the total number of operations. Then,
points which exhibit large pairwise differences between x(1) · · ·x(no) are selected
as POIs. Other works have proposed to use the sum of all pairwise differences
between operations and selects points among the highest peaks [208]. However,
Gierlichs et al. noted that positive and negative differences between the averages
may zeroize, which could result in information loss. They propose the Sum of
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Squared Pairwise Differences (SOSD) as an improvement [100]:

SOSD =

no∑
i,j=1

(x(i) − x(j))2, for i ≥ j (2.3)

An issue with each of the above POI selection methods is that they only consider
the mean of the signal. In case information is contained within the variance of
the operations as well, a metric such as the Sum of Squared Pairwise t-Differences
(SOST) can be used instead, which is defined as [100]:

SOST =

no∑
i,j=1

x(i) − x(j)√
σ2
i

ni
+

σ2
j

nj


2

, for i ≥ j (2.4)

Note that the SOST uses the t-value as its metric, similar to TVLA (see Sec-
tion 2.3.2). Again, the highest values can be chosen as POIs [100, 121].

2.4 Signal alignment

For many operations pertaining to SCA, it is desired that collected traces be
aligned in the time domain. For instance, when averaging a set of nm traces of
the same operation {x(1), x(2), . . . , x(nm)} in order to improve the Signal-to-Noise
Ratio (SNR) of the operation’s leakage, it is essential that ∀j ∈ {1, 2, ...nx} with
nx the number of samples per trace, the samples x

(1,2,...nm)
j correspond to the

same leakage event (e.g., a leaking instruction). If the signals are not aligned,
leakage from different parts of the operation will be added together, resulting in
noise. In this section, we will briefly review a number of techniques for aligning
signals.

2.4.1 Trigger signals

Trigger signals are commonly used as a coarse method for trace alignment. Here,
the adversary is assumed to be in control of the device under attack and able
to generate a trigger signal to mark the start and/or end of a cryptographic
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operation of interest, e.g., by setting an IO pin [93, 94, 133, 174, 181]. Depending
on the timing accuracy and wiring delays of the trigger, additional alignment
techniques may subsequently be used to achieve a more accurate alignment [93,
174].

2.4.2 Cross-correlation

A commonly-used method to determine the relative lag between two signals
x(i), x(j) ∈ Rnx with i, j ∈ {1, 2, . . . , nm} and i ̸= j is by calculating the cross-
correlation, which is defined for real signals as:

(x(i) ⋆ x(j))k =

∞∑
m=−∞

x(i)
m x

(j)
m+k (2.5)

The resulting cross-correlation signal will be high when x(i) and x(j) overlap.
Hence, the index of the maximal value of this signal yields the point of maximal
overlap, which is the lag between the two signals. In case more than two signals
are to be aligned, one trace can be chosen as a “reference trace” to which all
other signals are synchronized [43, 96, 174, 181, 265].

Note that when using this methodology, it is crucial that the reference trace is not
distorted and has a high SNR. This can be ensured by discarding a bad reference
trace and selecting a new one [96], or by using the mean of all currently aligned
traces as the reference trace [43].

Finally, some works have applied cross-correlation as a means to deal with drift
between traces. First, a set of time segments of the reference trace is chosen
instead of the full trace. Then, assuming that the drift within the segments
themselves is negligible, multiple cross-correlations with each of the time segments
can be periodically performed to resynchronize the full trace [96, 181].

2.4.3 Autocorrelation

The autocorrelation of two real signals is defined identically to Equation 2.5, ex-
cept that in this case i = j. As such, the autocorrelation determines the relative
lag between a signal and itself, which means it can be used to detect repeating
patterns within a signal. If a trace for example contains multiple identical cryp-
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tographic operations, occurrences of each of these operations can be detected by
observing peaks in the autocorrelation signal. It may therefore serve as a less
intrusive method of segmenting traces compared to manually providing a trigger
signal.

2.4.4 Dynamic time warping

Dynamic Time Warping (DTW) was originally introduced by Sakoe et al. as a
technique for aligning speech signals [225]. A faster implementation, FastDTW,
was proposed by Salvador et al. in [226], and later used in context of Differential
Power Analysis (DPA) by Van Woudenberg et al., where it is referred to as
“elastic alignment” [265].

Given two equal-length traces x = {1, 2, . . . i, . . . , T} and y = {1, 2, . . . j, . . . , T},
the DTW algorithm constructs a “warp path” F = {c(1), c(2), . . . , c(k), . . . c(K)}
where K is the warp path length with T ≤ K < 2T . A node c(k) of a warp path
is defined as the function c(k) = (i(k), j(k)), which indicates that the i(k)th point
of x is warped to the j(k)th point in of y [225]. The warp path is furthermore
constrained in a number of ways [225, 265]:

• Monotonic conditions: i(k − 1) ≤ i(k) and j(k − 1) ≤ j(k).

• Continuity conditions: i(k)− i(k − 1) ≤ 1 and j(k)− j(k − 1) ≤ 1.

• Boundary conditions: The warp path must start at (1, 1) and end at (T, T ).

The original paper proposed two possible additional constraints [225]:

• Adjustment window condition: A point can only be warped by a maximum
distance of r, i.e., |i(k)− j(k)| ≤ r.

• Slope constraint condition: The warp path is constrained by P = n/m, the
number of diagonal steps n that must be taken per m vertical or horizontal
steps.

To find the most optimal warp path, a cost matrix d(i, j) = ||xi − yj || is first
calculated. This matrix indicates the cost of a potential warp path node as the
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Euclidean distance between the points xi and yj . The minimum-cost warp path
distance is then determined by calculating:

D(x, y) = min
F

1

N

[
K∑

k=1

d(c(k)) · w(k)

]
(2.6)

which can be obtained by starting from (T, T ) and performing a greedy search
towards (1, 1). In Equation 2.6, w(k) is a weighting function and 1/N is a nor-
malization. In context of elastic alignment, N is chosen to be equal to 2T and
w(k) indicates the number of steps made in each dimension of the matrix d [265].

Finally, once the minimum-distance warp path F has been obtained, the principle
of elastic alignment is to use this path to compress or stretch samples from y such
that it is aligned with x [265].

ẋi = xi (2.7)

ẏj =
1

|{k|i(k) = j}|
∑

i(k)=j

yj(k) (2.8)

If the trace set contains more than two traces, one could set x to a fixed (aggre-
gate) reference trace and perform elastic alignment with all remaining traces.

2.5 Attack methodologies

2.5.1 Simple Power Analysis

In a Simple Power Analysis (SPA), the adversary captures a single or aggre-
gate power consumption trace of a cryptographic operation, and then directly
interprets the patterns present in this trace to identify key-dependent leak-
age [137, 160, 174, 286]. The key-dependent leakage must therefore manifest as
a discernible feature within a single (aggregate) trace. If the leakage is masked
by noise such as measurement noise, noise from other operations or SCA coun-
termeasures, a SPA is not feasible. In this case, techniques that are based on
statistical measures, which involve multiple traces, could be used instead.
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Figure 2.5.1: Figure from the work of Genkin et al. [98], showing an aggregate EM trace
of GnuPG’s ECDH decryption. The double (D) and add (+1/-1) operations can be distin-
guished with SEMA.

When a SPA relies on EM measurements rather than power consumption mea-
surements, the analysis is referred to as Simple Electromagnetic Analysis (SEMA)
[8, 204, 208, 224]. Although SPA and SEMA are conceptually identical, Agrawal
et al. show that, for some instructions, the EM side channel can leak more in-
formation than the power side channel [8]. Figure 2.5.1 shows an example where
a SEMA is performed on an implementation of Elliptic-curve Diffie–Hellman
(ECDH). Note that the difference between double and add operations during the
ECDH decryption can be visually observed from the trace. This information can
subsequently be used to reveal the private key.

2.5.2 Differential Power Analysis

Classic DPA was introduced together with SPA by Kocher et al. in [137], where it
was used to perform a power side-channel attack on Data Encryption Standard
(DES). Similar to the case of SEMA, DPA is commonly called DEMA when
applied to the EM side channel. In DPA, the adversary first captures nm traces of
the power consumption during a cryptographic operation with random-plaintext
input, each consisting of nx samples [169]. These can be arranged in a matrix
X ∈ Rnm×nx . Next, the traces are partitioned according to a hypothesis of the
leakage at any intermediate state of the cipher where this leakage depends on
the key and the random input. For example, suppose that we have some leakage
of a single bit of intermediate state L at time t that is a function of the trace’s
plaintext bit px and the true key bit k such that xt = L(px, k). The adversary
can then partition the traces into two sets:
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S0 = {x|x ∈ X,L(px, kg) = 0} (2.9)
S1 = {x|x ∈ X,L(px, kg) = 1} (2.10)

where kg is a guess for the value of the key bit k. The main observation of DPA
is that if we make a correct guess for kg, then the power consumptions at xt will
be correctly partitioned into S0 and S1, whereas if we make an incorrect guess,
the partitioning will be random. If we calculate the differential trace T as:

T = S0 − S1 (2.11)

where S0 and S1 are the mean traces of S0 and S1 respectively, then a peak
should be visible at Tt when kg = k, whereas for other guesses Tt ≈ 0. In
practice however, there may be leakage correlations with the true key even if kg
is an incorrect guess, leading to “ghost peaks” [37, 111]. Brier et al. introduced
Correlation Power Analysis (CPA) as a methodology to mitigate some of the
shortcomings of DPA, which will be discussed in Chapter 9 [37].

2.5.3 Template attacks

Classical Template Attacks (TAs) were introduced by Chari et al. in their seminal
paper in 2003 [50] and consist of two stages: a profiling stage and an attack
stage. In the profiling stage, the adversary is assumed to be in control of a device
that is identical to the device under attack. This device is used to characterize
both the leakage and noise under different operations using statistical models.
Such characterizations are called templates of the operations. Once a template
has been obtained for each operation, the adversary enters the attack stage and
measures the leakage and noise of the device under attack. These measurements
are then matched to the most likely template in order to determine exactly which
operation was performed or to reduce the set of possibly performed operations.

Although the precise probability distribution of the leakage and noise is generally
unknown, it can be approximated by the multivariate Gaussian model [11, 50,
55, 208]. To build templates under this assumption, the adversary performs the
following steps:

1. The adversary captures a set of leakage traces Xo ∈ Rm×n, where m is the
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number of traces, n is the length of each trace, and o is the operation being
performed by the experimental device. We will refer to the ith trace in Xo

as x(o,i), where x ∈ Rn, i ∈ {1, 2, . . .m}.

2. For each operation, an average trace is calculated as:

x(o) =
1

m

m∑
i=1

x(o,i) (2.12)

Under the multivariate Gaussian leakage model, we assume that this aver-
age trace corresponds to the leakage signal for operation o. Note that we
also implicitly assume perfect alignment of the measurements.

3. Once the leakage signal has been obtained, the noise signals η are calculated
by subtracting the leakage signal from each measurement:

η(o,i) = x(o,i) − x(o) (2.13)

4. Finally, in order to model the noise, the covariance is computed between
all pairs of components of the noise vectors, yielding the covariance matrix
Σ

(o)
uv , where u, v ∈ η(o,i):

Σ(o)
uv = cov(η(o,i)u , η(o,i)v ) (2.14)

The template for operation o can now be constructed as a tuple (x(o),Σ
(o)
uv ).

Given the set of templates, an adversary can now measure the leakage x from the
device under attack and calculate the most likely template using the multivariate
Gaussian probability density function:

p(x|x(o),Σ(o)) =
1√

(2π)n|Σ(o)|
exp

(
−1

2
(x− x(o))TΣ(o)−1

(x− x(o))

)
(2.15)

From the above description, it is clear that an important aspect of TAs is the
selection of POIs. Without prior POI selection, the number of elements in the
covariance matrix

∑
increases quadratically with the size of the leakage trace,

which results in an increased computational load and storage requirements. The
original paper by Chari et al. recommends to select POIs that have large pairwise
differences between the average signals x(o) [50] (see Section 2.3.4). However, in
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the literature, several other POI selection methods have also been applied in
context of TAs, including the sum-of-differences method [208], PCA [55, 208], or
Linear Discriminant Analysis (LDA) [55].

2.6 Comparison of attacks

While the metrics and methodologies discussed in the previous section are useful
for measuring information leakage, we also need a metric to compare the effec-
tiveness of attacks that exploit this leakage. An intuitive approach is to simply
count the number of traces required for a successful attack, known as the Min-
imum Traces to Disclosure (MTD) [246]. Here, a successful attack is defined as
one where the adversary is able to fully recover the secret key. In practice how-
ever, it may occur that the adversary is able to obtain a small set of candidate
keys using much less traces than the MTD (e.g., the attack may yield 3 candidate
keys of which one is the true key). Two commonly-used metrics that allow for
more flexibility regarding the definition of a successful attack are the oth-order
success rate and Guessing Entropy (GE), both of which were first formalized for
SCA by Standaert et al. in [253].

2.6.1 Success rate

Suppose we have a part of the key, ks ∈ S, that we wish to recover using a
side-channel attack, and an arbitrary1 score vector d = {score(s) : s ∈ S}, sorted
from highest to lowest score such that ∀i < j, di ≥ dj . A successful side-channel
recovery of order o is then defined as [253]:

Expo(d) =

{
1, if score(ks) ∈ [d1, . . . , do]

0, otherwise
(2.16)

Here, it is important to note that d depends on the algorithm under attack, its
leakage function, and the adversary’s capability of measuring this leakage. This
assumption allows us to use a more simplified notation compared to [253]. The

1One could for example use the correlation with the true key ks.
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oth-order success rate for an attack against ks is now defined as:

SRo
ks
(rτ , rm, nm) = p(Expo(d) = 1) (2.17)

where rτ , rm, and nm are respectively the time complexity, memory complexity,
and number of traces. Hence, the oth-order success rate of an attack on ks,
given the computational limitations and number of measurements made by the
adversary, is equal to the probability that the score for ks is ranked amongst the
top o scores in d.

2.6.2 Guessing entropy

If we modify Exp(o)(d) such that it returns the index of the score of ks, rather
than a binary value that indicates its presence in the top o scores, we obtain the
“rank” of ks [253]:

rank(d) = {i− 1|di = score(ks)} (2.18)

By convention, we choose 0 as the lowest possible rank (corresponding to the
highest score in d). The GE is now defined as the expected number of guesses.
If we use the optimal strategy to guess for keys with the highest score in d first,
the expected number of guesses is equal to the expected value of rank(d) + 1:

GEks
(rτ , rm, nm) = E[rank(d) + 1] (2.19)



26 CHAPTER 2. SIDE-CHANNEL ANALYSIS



All models are wrong, but some are useful.
George Box

3
Machine Learning and Deep Learning

In the domains of Artificial Intelligence (AI) and computer vision, techniques
such as Machine Learning (ML) and Deep Learning (DL) have been shown to out-
perform classical approaches for numerous applications, including image classifi-
cation [143], style transfer [92], face recognition [232], and image generation [132].
To perform such tasks, ML and DL algorithms learn an abstract representation
of the input data by optimizing the internal parameters of a model based on a
given objective function [151]. Hence, ML and DL algorithms try to solve opti-
mization problems, e.g. for face recognition we might ask the question: “Which
selection of facial features results in the most optimal recognition of a person’s
face?”, whereas for image generation we may ask: “Which transformations on a
random input generate an image that is indistinguishable from a non-generated
image?”.

Similar optimization problems can be found in the field of information security
and privacy. For instance, the problem of determining whether an email contains
spam can be likened to the problem of detecting whether a particular image
contains a car or not. Both are classification problems; the only difference is in
the type of input being provided, i.e. letters for an email and pixels for an image.
Due to this similarity and the promising results obtained in computer vision, ML
and DL techniques have also been examined in context of security-related topics
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such as spam detection, intrusion detection, vulnerability discovery, forensics,
fingerprinting and side-channel analysis [192, 219, 221, 250]. In Chapter 8 and
Chapter 9, we will discuss the application of ML to respectively fingerprinting and
side-channel analysis. This chapter introduces the used notational convention
and revisits several concepts of ML that are necessary for understanding the
remainder of the thesis. For a more complete overview of the current state of the
art, see the works of Le Cun et al. [151], Shrestha et al. [240], and the references
therein.

3.1 Notation and terminology

The ML-related notation used in this thesis is based on the Stanford notation (see
for example [179] and [149]), with the exception that input examples are stored
row-wise instead of column-wise. This avoids confusion with the code implemen-
tations of the presented work, where the Keras deep learning framework [53] is
used. At the time of writing, Keras assumes a row-wise storage of input examples
by default [54].

An input example is a vector of real values or features that is provided as an input
to a ML algorithm. Depending on during which phase of the algorithm they are
used (see Section 3.2), we may refer to them as either training examples, cross-
validation examples or test examples. Formally, we denote an input example with
nx features as a tensor

x = {x1, x2, . . . xnx
}, x ∈ Rnx (3.1)

A dataset of nm input examples can be then represented as a matrix X, where
each example is stored in a row-wise manner:

X =


x
(1)
1 x

(1)
2 . . . x

(1)
nx

x
(2)
1

. . . . . . x
(2)
nx

... . . . . . . ...
x
(nm)
1 x

(nm)
2 . . . x

(nm)
nx

 (3.2)

Note that individual training examples are referenced using a superscript index
between parentheses, whereas a subscript indicates the index of a particular fea-
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ture. For example, x(4)
2 represents the 2nd feature of the 4th training example. If

we only consider a subset of nb < nm input examples of the total dataset in X,
X is called a batch of input examples.

3.2 Supervised learning

Supervised learning is currently one of the most popular ML approaches for
performing classification tasks. In this approach, a ML algorithm takes as input
a tuple of tensors (x, y), where x ∈ Rnx is an input example as before and y ∈ Rny

is called a label. A label is a known numerical representation for a certain class
that the ML algorithm must classify. For example, suppose that we would like
to train a binary classifier that, given an EM trace, tries to determine whether
the EM trace contains an AES encryption operation or not. In this case, we
have two classes (nc = 2), namely (i) the trace contains an AES encryption and
(ii) the trace contains no AES encryption. The labels of these classes can be
encoded as a numerical representation using one-hot encoding, where y ∈ Rnc is
a tensor of length nc having the index of the corresponding class set to one and
the remaining indices set to zero:

y(i) =

{
{1.0, 0.0}, if AES in trace (class 0)
{0.0, 1.0}, otherwise (class 1)

(3.3)

During the training phase, the goal of the ML algorithm is then to learn a map-
ping from the training example’s features x(i) to its corresponding label y(i).
This is achieved by applying a sequence of parameterized non-linear functions
to each input feature. In this thesis, we focus particularly on Artificial Neural
Networks (ANNs), which among others use perceptrons, convolution filters and
pooling operations to map features to labels. The following section will detail
these building blocks and show how they are used in current ANN architectures
to perform classification tasks.
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3.3 Neural network architectures

3.3.1 Multi-Layer Perceptron

The architecture of Multilayer Perceptrons (MLPs) consists of layers of inter-
connected processing units, called perceptrons or neurons. Such layers are also
called “fully connected” layers. Each neuron in a layer has an associated set of
input values, weights, a bias term, and activation function. The output of a single
neuron is determined by:

a1 = g(xw + b1) (3.4)

In this equation, x is a tensor of input features (e.g. samples of an EM trace), w
is the tensor of weights associated with each input feature, b1 is the bias term,
and g(x) is the activation function. Neurons can be stacked together to form
layers, such that the output becomes:

A[l] = g(A[l−1]W [l] + b[l]) (3.5)
A[0] = X (3.6)
A[nl] = Ŷ (3.7)

where l ∈ {0, 1, . . . nl} indicates the layer index1. Note that we define the first
activations A[0] as simply the input features X, and the final activations as the
output predictions of the neural network, denoted as Ŷ .

3.3.2 Convolutional Neural Network

In Convolutional Neural Networks (CNNs), two additional types of layers are
introduced: convolutional layers and pooling layers [159]. Here, the convolutional
layer is a layer that performs a series of convolution operations on its inputs.
The weights of the convolution kernels or “filters” are learned by the optimizer

1The index starts from 0 because by convention, the input layer is not counted as an actual
layer.
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Figure 3.3.1: Example of a simple fully connected two-layer perceptron neural network
architecture with nx input features, na hidden layer nodes and ny outputs.

algorithm. These filters act as feature detectors for the next layers that can be
useful across the entire input [150]. At the same time, less weights need to be
trained since the size of the filters is typically smaller than the number of input
features itself.

Convolutional layers are usually followed by pooling layers, which reduce the
resolution of the inputs by performing a local averaging (average pooling) or
local maximum (max pooling) and a subsampling operation [150]. This operation
makes CNNs more robust to small input shifts and deformations compared to
MLPs [41, 150]. Figure 3.3.2 shows an example of a 1D CNN with multiple
convolutional and pooling layers. Deeper layers are capable of detecting more
complex features of the input due to their larger receptive field. At the end
of the CNN, a series of fully connected layers follows, which uses the features
detected by the convolution filters to determine the output of the model.

3.4 Optimization of neural networks

The values of the parameters of a neural network architecture are determined
by optimizing an objective function with respect to the labels given during the
training phase. In the testing phase, a set of inputs with unknown classes can
then be provided to the trained model, yielding a prediction ŷ(i) of which class
they belong to. The question now remains of how this optimization is performed.
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Figure 3.3.2: Example of a simple 1D convolutional neural network architecture, consisting
of 3 convolutional layers, 3 pooling layers, 2 fully connected layers and an output layer.

3.4.1 Loss and cost functions

Before the parameters of a neural network can be optimized, a function L(ŷ(i), y(i))
must be defined that measures, for the ith training example, the fitness of a pre-
dicted label ŷ(i) compared to the known label y(i) during training. Returning to
our example of classifying the presence of an AES encryption in an EM trace, the
one-hot encoded labels can be interpreted as a probability distribution. Hence,
we could use the cross-entropy loss as a similarity metric as follows:

L(ŷ(i), y(i)) = −(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))) (3.8)

Since we are interested in minimizing the loss for our entire dataset, we can define
the cost function as the average loss over all training examples.

J(ŷ, y) =
1

nm

nm∑
i=1

L(ŷ(i), y(i)) (3.9)

Note that if the predicted labels are equal to the true labels, the cost function
J will be zero. It is therefore the optimizer’s task to tune the model parameters
such that the cost function is close to zero.
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3.4.2 Parameter tuning

To produce an output prediction Ŷ given X that results in a low cost, the param-
eters of the ANN must be tweaked during the training process such that Ŷ ≈ Y .
In order to achieve a good approximation of Y , the parameters are first initial-
ized randomly2. This is to prevent the network from learning the same function
for all nodes in a layer, i.e., to “break symmetry”. Then, the following steps are
generally repeatedly performed in order to train the network:

• Perform forward propagation to obtain Ŷ .

• Compute the cost function with respect to Y .

• Determine the gradient for the parameters with respect to the loss function
using back propagation.

• Update the model parameters based on the gradient.

The back propagation algorithm works by calculating the partial derivatives of the
model parameters with respect to the loss function, using the chain rule. Suppose
for example that we are using the binary cross-entropy loss (see Equation 3.8)
and we have the following single-layer MLP architecture:

Ŷ = σ(Z [1]) (3.10)
Z [1] = XW [1] + b[1] (3.11)

where σ is the sigmoid activation function. Then for one training example x we
have:

ŷ = σ(xW [1] + b[1]) (3.12)

The back propagation algorithm proceeds as follows:

2A popular initialization method at the time of writing is called “Glorot initialization”.
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∂ŷ
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∂L(ŷ, y)

∂ŷ
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Finally, the parameters can be updated, scaled with a given learning rate α as:

W [1] = W [1] − α
∂L

∂W [1]

b[1] = b[1] − α
∂L
∂b[1]

3.4.3 Saliency maps

In context of computer vision, Simonyan et al. have demonstrated how saliency
maps can be used as a means for visualizing the pixels of a given image that
contribute the most (either positively or negatively) to a trained CNN’s classifi-
cation score Sc for a certain class. For an m× n grayscale image x ∈ R+m×n, a
saliency map M can be obtained by calculating the element-wise absolute values
of the partial derivative of Sc with respect to x [244]:

M = abs
(
∂Sc

∂x

)
(3.13)

The same methodology can be applied in context of SCA in order to identify
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samples that are important in defining the score for a certain hypothesis key. Such
points may then be used as POIs, as demonstrated in recent related works [119,
167].
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4.1 Introduction

In wireless networks that implement Wi-Fi, the necessity to warrant the
properties of the CIA triad that we discussed in the introduction of this thesis
is perhaps even more important for enterprises, where the data that is being
transmitted over the air may contain highly sensitive information such as trade
secrets, medical records, or large quantities of personally identifying information.
To ensure the integrity and confidentiality of this data, the 802.11 standard pro-
vides a number of security protocol variants that can be configured by network
administrators.

A first variant named “WPA2-PSK”, which is defined in the 802.11i amendment,
is the most common choice for home users. Here, the network administrator
configures a single passphrase to be used for authenticating to the Access Point
(AP). This passphrase is shared with all users that require access to the network.
For enterprises, such an approach would be infeasible since different users may
require different access rights on the network, access may need to be revoked
to former employees or the passphrase may unintentionally leak to unautho-
rized third parties. Therefore, the standard defines another variant that is more
oriented towards enterprises, named “WPA2-Enterprise”. Here, the network ad-
ministrator can provide each user with their own username and password and
manage these credentials from a central authentication server.

An important consideration to make, especially when the enterprise permits a
Bring Your Own Device (BYOD) policy, is that most Wi-Fi-enabled devices on
the market automatically join the nearest wireless network in their Preferred Net-
work List (PNL) by default. This is convenient for the user, but it also allows an
adversary to trivially perform an “Evil Twin” attack [180]. In this attack, the ad-
versary sets up a rogue AP with a configuration identical to the targeted network
(the same Service Set Identifier (SSID), capabilities and cryptographic suites) in
order to trick users into connecting to their rogue AP and subsequently become a
Man-In-The-Middle (MITM). To mitigate this issue, the authenticity of the AP
can be verified by the device through an authentication protocol. Note that this
verification transparently happens in the background, so the user fully relies on
the used authentication protocol for its security. In context of WPA2-Enterprise
networks, the Institute of Electrical and Electronics Engineers (IEEE) 802.1X
standard specifies that the Extensible Authentication Protocol (EAP) protocol
should be used for this purpose. This authentication protocol is “extensible” in
the sense that it implements a wide variety of different authentication procedures,
called EAP methods.
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Though EAP methods are well-defined in their corresponding standards, a correct
protocol implementation is the responsibility of the device vendor. Unsurpris-
ingly, there are subtle differences between various vendor implementations. In
this chapter, we will show that some of these differences can contribute to signif-
icant explicit information leakage vulnerabilities (RG1). We focus our analysis
of EAP methods mainly on the Protected Extensible Authentication Protocol
(PEAP) method because it is popular, widely supported and considered secure.
We examined the PEAP implementation of some of the most popular operating
systems used today, including Windows, Mac OS X, Android and iOS [113]. Our
main contribution is a practical attack on Apple devices that allows an adversary
to bypass authentication (C1). The vulnerability causing this issue was reported
to Apple on February 5, 2014.

The remainder of this chapter is structured as follows. In Section 4.2, we give
a theoretical description of the Lightweight Extensible Authentication Protocol
(LEAP) and PEAP authentication protocols and highlight how the combined us-
age of these protocols can introduce vulnerabilities. Section 4.3 then illustrates a
practical implementation of an attack that exploits this vulnerability. Addition-
ally, we assess which devices were vulnerable at the time of writing (RG2). Then,
we discuss a number of mitigation strategies in Section 4.4 (RG3), followed by
an overview of related works and the conclusions of this chapter in Sections 4.5
and 4.6.

4.2 LEAP and PEAP vulnerabilities

Before we discuss a practical implementation of our attack in Section 4.3, let us
first examine how credentials are exchanged in two EAP methods: LEAP and
PEAP. The former, LEAP, is a proprietary EAP method developed by Cisco
which uses the MSCHAPv1 algorithm to authenticate users. The three entities
participating in the authentication are the Supplicant, the Authenticator, and the
Authentication Server (AS). For simplicity, assume that Authenticator and AS
reside on the same machine. The LEAP authentication procedure is performed
as follows [74]:

1. The Supplicant associates with the AP and exchanges its identity with the
AS. This step is identical for all EAP methods.

2. The AS sends an 8-byte challenge Cs, where Cs = Random8(seed), to the
Supplicant.
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3. The Supplicant generates, as described in RFC 2433 [292], a 24-byte chal-
lenge response Rp, where Rp = ChallengeResponse(Cs,H), H = MD4(Uni-
code(PW)) and PW is the password of the user. Rp is then sent to the AS.

4. The AS calculates Rcheck = ChallengeResponse(Cs,H). The exchange is
successful if Rp and Rcheck match.

5. In case of success, an EAP-Success message is sent from Authenticator to
the Supplicant. Then, AS and Supplicant switch roles and repeat steps 2
to 4. This time we denote the challenge sent by the Supplicant as Cp, and
the response by the AS as Rs.

6. The AS derives the Session Key (SK) as

SK = MD5(MD4(Unicode(H))||Cs||Rp||Cp||Rs) (4.1)

where “||” is the concatenation operator. The AS encrypts this value
with the Remote Authentication Dial-In User Service (RADIUS) secret
and sends it to the Authenticator. The Supplicant also derives the SK, so
this key can be used for Wired Equivalent Privacy (WEP) encrypted uni-
cast communication. Finally, a random broadcast key is generated by the
Authenticator and sent encrypted with the unicast key to the Supplicant.

Figure 4.2.1 shows a diagram of the previous algorithm. Note that a LEAP
exchange is practically identical to performing two MSCHAPv1 authentications
(steps 2 to 4): one from AS to Supplicant (Cs → Rp) and one from Supplicant
to AS (Cp → Rs). [292].

Next, let us examine PEAP. This authentication method is significantly more
complex, and among other features supports MSCHAPv2 mutual authentication
to protect against MITM attacks [188, 189]. Assuming cryptographic binding is
not used (see Section 4.4.3), PEAP authentication is performed as follows:

1. The Supplicant associates with the AP and exchanges its identity with the
AS.

2. In Phase 1, the Supplicant and AS set up a TLS tunnel similar to the
procedure described in RFC 5246 [79]. From the TLS master secret, a
Master Session Key (MSK) is derived via a one-way function. This key
serves a comparable purpose to the SK from LEAP.
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Figure 4.2.1: General LEAP authentication sequence

3. Phase 2 is performed inside the TLS tunnel and implies usage of an EAP
inner authentication method. MSCHAPv2 is frequently used for this pur-
pose. Assuming MSCHAPv2 is used, the AS starts by generating a 16-byte
random server challenge Cs = Random16(seed) and sends it to the Suppli-
cant.

4. The Supplicant also generates a random 16-byte peer challenge Cp. Then
the challenge response is calculated as

Rp = ChallengeResponse(Challenge(Cs),H) (4.2)

where Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 7], U is the username of the
user, H = MD4(Unicode(PW)), PW is the password of the user and [0 : 7]
means the first eight bytes of the data. This challenge response is trans-
mitted back to the AS, along with Cp and U .

5. The AS calculates Rcheck analogous to Rp in step 4. Rcheck and Rp must
match, or the authentication will fail.
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6. The AS calculates a peer challenge response

Rs = PeerResponse(MD4(Unicode(H)),M1, Rp,Challenge(Cp),M2)
(4.3)

where M1 is the string “Magic server to client signing constant” and M2

is the string “Pad to make it do more than one iteration”. This result is
SHA1-hashed and sent to the Supplicant.

7. The Supplicant authenticates the server, completing the MSCHAPv2 inner
authentication.

8. An EAP-Result-TLV exchange is performed between AS and Supplicant
to indicate the result of the PEAP authentication. Then an EAP-Success
message is sent.

9. The MSK is used to derive the WPA2 Pairwise Master Key (PMK) and
subsequent keys. Secure transmission of data can begin when the 802.11i
four-way handshake [117] is completed.

Figure 4.2.2 visually illustrates a PEAP exchange. When comparing the core
differences between MSCHAPv1 and MSCHAPv2 credentials from RFCs 2433
and 2759, we can see that they are in fact very minor. Table 4.2.1 shows a
comparison between the two methods [231, 291, 292].

Though RFC 2759 states that MSCHAPv2 is incompatible with MSCHAPv1
[291], the insignificance of the aforementioned differences led us to the conclusion
that some MSCHAPv1 messages can be converted to MSCHAPv2 messages and
vice versa.

We will now show that Cs from MSCHAPv1 is identical to Challenge(Cs) from
the MSCHAPv2 AS and that Rp from the MSCHAPv1 peer is identical to Rcheck

at the MSCHAPv2 server. This way we can be sure that all messages converted
from MSCHAPv1 to MSCHAPv2 or vice versa will be accepted by the destination
host. For the challenges we derive:

Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 8] (4.4)
= SHA1(x)[0 : 8] (Cp and Cs are random) (4.5)
= Random8(seed), x is random (4.6)
= Cs (4.7)
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Figure 4.2.2: General PEAP authentication sequence

Given that the ChallengeResponse function is the same in MSCHAPv1 and
MSCHAPv2, we derive for the challenge responses:

Rs = ChallengeResponse(Cs,H) (4.8)
= ChallengeResponse(Challenge(Cs),H) (Eq. 4.7) (4.9)
= Rcheck (4.10)

With the knowledge that the challenge we get from the PEAP MSCHAPv2 AS
can be converted to an MSCHAPv1 challenge (Equation 4.7), and that the chal-
lenge response we get from our LEAP MSCHAPv1 victim can be converted to an
MSCHAPv2 challenge response that matches Rcheck on the AS (Equation 4.10),
we devised a relay attack that uses a vulnerable device as an MSCHAPv2 chal-
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Table 4.2.1: Differences between MSCHAPv1 and MSCHAPv2 exchanges

MSCHAPv1 MSCHAPv2

Cs Cs = Random8(seed) Cs = Random16(seed)
Cp Cp = Random8(seed) Cp = Random16(seed)
Rs Rs = ChallengeResponse(Cp, H)

Rs = PeerResponse(MD4(Unicode(H)),
M1, Rp, Challenge(Cp),M2)

Rp Rp = ChallengeResponse(Cs, H) Rp = ChallengeResponse(Challenge(Cs), H)

lenge response oracle in order to gain unauthorized access to PEAP networks.
Figure 4.2.3 shows a schematic representation of our attack.

4.3 Practical LEAP relay attack

Our attack essentially exploits a combination of two vulnerabilities. A first vul-
nerability is the fact that some devices accept the LEAP method as an alternative
method for authentication. Since the LEAP method does not establish a TLS
tunnel from client (or “Supplicant”) to AS prior to exchanging credentials, it is
vulnerable to a rogue AS MITM attack [74].

The second vulnerability is that when the user configures or joins a PEAP net-
work, some devices reuse the supplied or installed credentials for all supported
EAP methods. Hence, the LEAP credentials do not have to be re-entered explic-
itly by the user. Existing MITM attacks try to capture these LEAP credentials
using a rogue AS, and then crack them with dictionary attack tools like asleap1.
In our attack, we will use the credentials to attack PEAP.

In this section we will show how the MSCHAPv1 to MSCHAPv2 conversion
can be exploited in practice. First we will discuss the preconditions for the
attack. Then, a practical implementation for attacking Apple devices will be
demonstrated.

4.3.1 Preconditions

A device connecting to a PEAP network is considered vulnerable to our attack
when all of the following preconditions are met:

1This tool can be downloaded from the following URL: http://www.willhackforsushi.com/
?page_id=41

http://www.willhackforsushi.com/?page_id=41
http://www.willhackforsushi.com/?page_id=41
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• The device supports the LEAP method.

• The device connects automatically to the PEAP network. This is the de-
fault behavior.

• The Authenticator does not require and validate client certificates. Server
certificate validation and certificate pinning may be enabled on the client.

• The MSCHAPv2 or MSCHAPv1 inner authentication EAP method is sup-
ported and allowed on the AS.

Note that most of the preconditions listed here are commonly fulfilled by default
in enterprise network setups.

4.3.2 Case study: Apple devices

We will now demonstrate how the exploit can be practically applied to Apple
devices (see Figure 4.2.3). Our proof-of-concept implementation uses a simple
state machine to perform the attack (Figure 4.3.1). After successful execution,
an attacker gains unauthorized access to the target network by impersonating a
legitimate user.

State 1: Association

Before wireless clients can begin the exchange of EAP packets in a wireless net-
work, they require association with a wireless AP. We exploit the default auto-join
behavior to have clients associate to an AP under our control. In order to ac-
complish this, we set up a fake wireless AP with the same SSID and parameters
as the target network. This fake AP broadcasts beacon packets and replies to
Probe Request frames from clients.

The client will associate or reassociate to our fake AP when it is closer than the
target network AP, because better signal strength is preferred [90]. Alternatively,
we can operate our fake AP on a different channel [266, 269] or force the client
to connect to it by performing reactive jamming similar to the attacks described
in [44, 266]. Since we do not want to receive requests from devices that are not
vulnerable, our implementation uses the MAC address Organizationally Unique
Identifier (OUI) to identify the device vendor. We can filter out all non-vulnerable
devices this way.
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State 2: Identification

The first step after association in WPA2-Enterprise networks is identification.
The AS has to know which user wants to authenticate in order to match cor-
responding credentials. We can learn the identity of the vulnerable device by
sending an EAP Identity Request frame. The device will then reply with an
EAP Identity Response which contains the username of our victim.

At this point, data sent over the air is still not encrypted. Hence, some PEAP
configurations will use anonymous identities. In this case the real username is
only disclosed when a TLS tunnel has been established between the Supplicant
and the AS. Nonetheless, we can still get the real username in a later phase of
our attack.

Our next goal is to get the challenge value from the target AP. We created
a modified version of the wpa_supplicant2 tool for this purpose. At the end
of this state, the binary executable of this modified version is called from our
implementation.

State 3: Challenge

In State 3, we wait for the wpa_supplicant tool to establish a TLS tunnel with
the target AS and extract an MSCHAPv2 challenge from the inner authentica-
tion. We can now see why usage of client certificates would mitigate the attack,
as the client certificate validation would not be successful in this case.

When the MSCHAPv2 challenge is retrieved, we pass it on to our tool. Upon
receipt, the tool will periodically send LEAP Request messages (containing the
extracted challenge) to the Apple device in order to keep the session alive.

State 4: Response

After receiving the LEAP Request, our victim will reply with a LEAP Response
which contains an MSCHAPv1 challenge response to our MSCHAPv2 challenge.
Should the target PEAP network enforce anonymous identities, the real or inner
identity of the victim will also be revealed to the attacker through this LEAP
Response. Next, our implementation will forward the received MSCHAPv1

2wpa_supplicant is an open source 802.1X supplicant implementation by Jouni Malinen.
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Table 4.3.1: Devices vulnerable to the LEAP relay attack

Device Vulnerable
iPod Touch (iOS 6.1.6) 3
iPhone 4 (iOS 7.1) 3
iPhone 4S (iOS 7.1) 3
Mac OS X 10.8.2 (Mountain Lion) 3
Samsung GT-S5570 (Android 2.3.4) 7
Google Nexus 7 (Android 4.4.2) 7
Samsung GT-I8750 (Windows Phone 8.0) 7
Windows 7 Desktop 7

challenge response as an MSCHAPv2 challenge response to the modified wpa_
supplicant tool, which will in turn forward the challenge response to the legiti-
mate PEAP network AS.

State 5: Success

When the AS receives our modified challenge response, authentication proceeds
as usual, which means the AS has to authenticate to our Supplicant. However,
since we are not in possession of the NT password secret, we cannot derive H.
Hence, when receiving the peer challenge response from the AS, we are forced to
accept any sent value.

After this, the MSCHAPv2 inner authentication will complete successfully and
the port will be authenticated. The AS and our Supplicant will derive the MSK,
and from this we can derive the PMK. We now have all components required to
access resources on the internal network.

4.3.3 Test results

We tested our attack on devices from multiple vendors. Table 4.3.1 shows on
which devices the LEAP relay attack was successfully performed.

Assuming that the same network protocol stack is used on all Apple operating sys-
tems, we concluded from these results that all Apple devices are vulnerable. The
attack was executed analogously on each device for multiple APs, using differ-
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ent AS implementations. These included a TP-Link WN422G using hostapd and
the latest freeradius implementation on the same machine, a Linksys WRT54G
AP using the latest freeradius implementation on a dedicated machine, and a
Ubiquity UniFi AC 3.x AP using Windows RADIUS server on a dedicated ma-
chine.

4.4 Mitigation

The attack we described in this chapter can be mitigated in various ways. We
will discuss five methods in this section.

4.4.1 Client certificates

In State 3 of our attack, a TLS tunnel has to be established between the attacker
and the target network AS. When using client certificates similarly to EAP-TLS,
each client’s certificate must be provided in the “Client Hello” phase of the TLS
tunnel setup. When this verification fails, the TLS setup will be aborted and
hence, our attack will fail because the MSK cannot be derived from the TLS
master secret.

This countermeasure is very effective and by far the most secure. However, it
would require a lot of administration effort for enterprises. Especially in enter-
prises with a BYOD policy, because a signed certificate for every device allowed
on the network must be installed on the AS.

4.4.2 iPhone Configuration Utility

iPhone configuration profiles allow the network administrator to choose which
EAP methods clients must use (see Figure 4.4.1). They are the only way in
which LEAP can be disabled on the examined Apple devices. If this method is
chosen to mitigate the attack, care must be taken in BYOD environments: if one
user does not install the network profile, the attack can nevertheless be executed.
Furthermore, network profiles can be accidentally removed by the user. For these
reasons, security is put in the hands of the end user and therefore this method is
not as secure as using client certificates.
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4.4.3 Cryptobinding

An optional feature described in the PEAP version 2 internet draft is crypto-
graphic binding [189]. This feature introduces the use of a new Type-Length-
Value (TLV), the CryptoBinding TLV, to address MITM attacks. A two-way
handshake containing a Compound MAC Key (CMK) proves that the two au-
thentications terminate at the same PEAP peer and PEAP server [173].

To calculate the CMK, the Supplicant is required to use keying material from
both Phase 1 and Phase 2 of the PEAP exchange. In practical terms this involves
the calculation of the Tunnel Key (TK) and the Inner Session Key (ISK). These
keys are combined in the cryptobinding algorithm to form the CMK.

The TK is calculated similarly to the MSK from the TLS master secret, and would
be available to an attacker. The ISK however, is calculated at the Supplicant
as ISK = InnerMPPESendKey||InnerMPPERecvKey. The InnerMPPESendKey
and InnerMPPERecvKey are both derived from the inner MSCHAPv2 Master
Key (MK), which is derived as

MK = GetMasterKey(MD4(Unicode(H))[0 : 16], Rs) (4.11)

Since H is unknown to the attacker, the ISK cannot be derived and authentication
will fail.

If all consumer devices would support cryptobinding, this method would probably
be the best way to mitigate our attack. However, from our experiments we
concluded that Apple devices did not support cryptographic binding at the time
the vulnerability was discovered.

4.4.4 Intrusion detection

A signature based Wireless Intrusion Detection System (WIDS) might be able to
detect our attack by passively scanning for LEAP requests. Since these packets
will never be sent by a legitimate AP, WIDS sensor nodes have a clear indication
that the network is under attack. Analytic approaches to detect our attack may
include station counts, association counts, OS fingerprinting and Received Signal
Strength Indicator (RSSI) value analysis, though these methods often lead to
false positives [57, 122].
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As a final note, we would like to indicate that care must be taken when relying
on a WIDS for detection of an attack, as we believe that in many cases the
WIDS may be bypassed. For example, a victim may be in range of the rogue AP,
while the latter is out of range from a WIDS sensor. In Figure 4.4.2, an example
scenario is shown where the relay attack is executed over the internet.

4.4.5 Rogue AP mitigation

If one can prevent the attacker from setting up a rogue AP, the LEAP relay
attack cannot be performed. Several methods have already been developed to
mitigate the rogue AP attack [21, 222, 284]. However, we believe not all of these
mitigation strategies will work. Context leashing will only work when creating
the rogue AP in a different context, EAP-SWAT will have the same problems as
PEAP, and other mitigation strategies in these works rely partly on the awareness
and expertise of the user. We believe link layer protection mechanisms would be
the most effective in this case.

4.5 Related work

A similar, generalized MITM attack on tunneled authentication protocols was
demonstrated by Asokan et al. in 2002 [12]. Related attacks on PEAP vendor
implementations such as the EAP dumb-down attack were introduced by Raul
Siles in 2013. This attack exploits the default lack of certificate validation in
mobile devices. However, for Apple devices, the dumb-down attack requires
user intervention whereas our attack is automatic [243]. Furthermore, a correct
configuration of authentication server certificates does not mitigate our attack
for Apple devices.

Schneier et al. have highlighted a number of weaknesses in MSCHAPv1 and
MSCHAPv2 [231]. In 2008, Joshua Wright and Brad Antoniewicz demonstrated
how EAP credentials such as MSCHAPv2 exchanges can be collected using
freeradiuswpe, a rogue AS implementation [282]. By using the asleap tool,
these credentials can then be cracked with a dictionary attack [58]. Then in
2012, Moxie Marlinspike showed how MSCHAPv2 credentials can be cracked in
less than 24 hours using cloud-based Field-Programmable Gate Array (FPGA)
nodes [163]. Finally, Josh Yavor indicated the dangers of BYOD and default
certificate validation behavior of mobile devices in 2013 [285].
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4.6 Chapter conclusions

We demonstrated how MSCHAPv1 challenges and challenge responses can be
converted to MSCHAPv2 challenges and challenge responses. Then, we indicated
how this can be exploited in practice when a Supplicant supports the insecure
LEAP method and when credentials are reused between EAP methods.

From our experiments we concluded that all Apple devices were vulnerable to
our attack at the time of the discovery of the vulnerability. We discussed various
mitigation strategies and their applicability to enterprise wireless networks, and
suggest that cryptobinding should be enabled as an effective countermeasure.
For devices that satisfy all mentioned vulnerability preconditions but do not
support cryptobinding, we instead suggest to disable LEAP entirely, for example
by installing configuration profiles in the case of older Apple devices.

The vulnerability was assigned CVE-2014-4364 after being reported to Apple
through a responsible disclosure procedure, along with our recommendations. It
was subsequently mitigated by Apple by disabling LEAP by default on all devices.
However, LEAP can be enabled manually through configuration profiles, meaning
an attack may still be possible if cryptobinding is disabled as well.
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Figure 4.2.3: Schematic representation of the Apple LEAP attack
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Figure 4.3.1: State machine of our attack

Figure 4.4.1: Disabling LEAP on Apple devices through configuration profiles

Figure 4.4.2: Remote LEAP relay attack
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5.1 Introduction

Throughout the years, several amendments have been made to the original
IEEE 802.11 standard in order to meet the increasing throughput demands of
wireless networks. The first amendment to increase the data rate as the result
of improvements on both the PHY layer and the MAC layer is 802.11n [120,
194]. Here, a key improvement on the PHY layer is the introduction of Multiple
Input, Multiple Output (MIMO) technology, where multiple spatially separated
antennas are used on both the receiver and transmitter to create multiple spatial
streams [127] and reduce multipath interference. Another addition is the optional
usage of an increased channel bandwidth of 40 MHz instead of 20 MHz [120, 194].

Besides these improvements on the PHY layer, the efficiency of the MAC layer
needed to be improved as well in order to go beyond speeds of 100 Mbps. Here,
the most notable efficiency improvement is frame aggregation [194], which allows
a station to transmit or receive multiple MAC frames in a single PHY frame,
reducing overhead due to headers and interframe spacing. All of the improve-
ments on the PHY and MAC layer combined increase the theoretical maximum
raw data rate of 802.11n to 600 Mbps [120, 248], which ultimately contributed
to 802.11n devices dominating the Wi-Fi market in 2013 [6].

Despite the beneficial effect of PHY and MAC layer improvements on the data
rate, these additions introduce new opportunities for security issues to arise.
In the case of 802.11n, frame aggregation is especially interesting to look at.
Although the standard specifies aggregation principles, frame structures and the
general mechanisms, it provides mere guidelines for the actual implementation
[127]. It is up to developers to implement their own aggregation schemes that
determine when, why and even how to aggregate individual frames [91, 257]. Such
schemes are typically implemented in the device driver or on the device firmware.

In this chapter, we will explore the frame aggregation mechanism introduced
in the 802.11n standard. We will show how the frame aggregation algorithm
provided by the 802.11n standard introduces a remote arbitrary frame injection
vulnerability on MAC hardware that implements this algorithm, thereby leaking
information from higher layers (e.g. the Application layer) into the MAC layer.
In Section 5.2, we will detail the contributions of this work, and describe several
related works. Section 5.3 describes the properties and implementation of the
802.11n frame aggregation mechanism, which is required knowledge for under-
standing our attack. Next, in Section 5.4, we describe the attack itself, along
with a feasibility study and a discussion of the results and potential impact. In
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Section 5.5 we propose several measures that can be put in place to defend against
our attack. Finally, Section 5.6 describes our conclusions.

5.2 Related work and contributions

Goodspeed et al. introduced the Packet-In-Packet (PIP) technique [105] in 2011,
and applied it to IEEE 802.15.4 [103, 105]. Additionally, they used this technique
to inject raw PHY layer frames into 802.11b networks for data rates of up to 2
Mbps [104]. Barisani et al. demonstrated in 2013 how, in rare cases, the PIP
technique can be applied to 802.3 wired links [20]. In 2014, Jenkins et al. used the
PIP technique for fingerprinting 802.14.5 and ZigBee receivers [131]. Similar PIP
principles have been used by Dabrowski et al. in order to embed barcodes inside
other barcodes [65]. Ossmann et al. propose a defense against PIP in the field of
radio communications by using error correcting codes [185]. Finally, Sassaman
et al. describe how formal language theoretic methods can be used as a defense
against injection attacks in general [227].

Our main contribution in this chapter (C2) is a methodology for remote arbitrary
frame injection into wireless networks that implement the 802.11n standard or
newer standards such as 802.11ac. This is accomplished by applying PIP princi-
ples to the MAC frame aggregation mechanism. To the best of our knowledge,
this approach has not been demonstrated before. Previously, the PIP technique
could only be used to perform frame injection attacks on 802.11b networks [104]
by tricking the radio into interpreting a raw PHY layer packet which is embedded
in the payload of another packet. As Goodspeed et al. mentioned in their work,
several complications and challenges exist that limit the practical feasibility of
their approach:

• The symbol set used in the Physical Layer Convergence Protocol (PLCP)
Protocol Data Unit (PPDU) must be included in the symbol set used for
the injected payload. Otherwise it will not be possible to inject a valid
PHY layer header. For example: if the data portion of the frame is mod-
ulated using Complementary Code Keying (CCK), it will be difficult for
an attacker to inject a valid PLCP preamble, which is modulated using
Differential Binary Phase Shift Keying (DBPSK).

• Even if a favorable symbol set is used, the data rates must be compensated
for. The 802.11 standard specifies different data rates for different sections
of the frame. For example, the PLCP preamble must always be transmit-
ted using the 1 Mbps DBPSK modulation. The SIGNAL field of a PPDU
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however, can then indicate to use a higher data rate for the remainder of
the frame [127].

• 802.11 PLCP Service Data Units (PSDUs) are scrambled using a 127-bit
sequence, which must be accounted for by the attacker.

• If the modulation technique uses differential signaling, the attacker must
account for this as well.

The methodology presented in our work removes all of these complications by
operating on the MAC layer. Consequently, our injection method can be applied
regardless of the chosen data rate, symbol set, signal whitening, or modulation
technique. Hence, the practical exploitability and attack surface of frame injec-
tion attacks is increased. To justify our claim of practical feasibility, we present
two realistic proof-of-concept attacks and estimate their success rate. Since this
success rate depends on the aggregation behavior of the wireless Network Inter-
face Controller (NIC), this aspect is briefly discussed as well. Finally, we propose
several defensive measures which can be applied to prevent exploitation of our
attack.

5.3 Background

Before we discuss our injection attack, we will give a brief overview of some of
the relevant PHY and MAC layer features introduced in 802.11n. These features
have notable implications for Goodspeed’s PIP attack, as well as the injection
attack that we will discuss in Section 5.4.

5.3.1 PHY features

On the PHY layer, two features added in 802.11n have some interesting prop-
erties for this research. First, there are the added PLCP frame formats, which
have additional fields and hence additional capabilities in comparison to previ-
ous versions of the standard. Secondly, there is a set of new Modulation and
Coding Schemes (MCSs) for higher data rates which we used throughout our
experiments.
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Figure 5.3.1: PLCP and MAC frame structures

PLCP frame format

The PLCP acts as an interface between the PHY and MAC layers. It defines a
frame format named the PLCP Protocol Data Unit (PPDU), which consists of a
PLCP Preamble, PLCP Header, and a PSDU. In 802.11n, the PPDU can have
several formats depending on the capabilities of the transmitting device:

• Non-High Throughput (HT) format: legacy frame format as specified by
previous versions of the standard.

• Mixed format: format that is backwards compatible with the 802.11 a/g
format.

• Greenfield format: HT frame format that can only be used by devices that
are 802.11n compatible.

The fields specified in the PPDU contain the parameters that determine how
the device hardware should transmit a packet. Examples of such parameters are
the modulation scheme, transmission length, and aggregation flag. Figure 5.3.1
shows the generic PLCP frame format. Naturally, a frame transmitted using a
certain set of parameters can only be received by a device that supports said
parameters. This set of supported parameters is also referred to as the capability
set of the device.

Modulation and Coding Scheme

The MCS is determined by the index specified in the MCS field of the PPDU.
The mapping between indices and the corresponding mandatory rates is given in
Table 5.3.1. The last column of the table indicates the data rate when a short
Guard Interval (GI) is used.
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Table 5.3.1: MCS parameters for mandatory 20 MHz [127].

Data rate (Mb/s)
MCS Modulation Coding GI SGI

0 BPSK 1/2 6.5 7.2
1 QPSK 1/2 13.0 14.4
2 QPSK 3/4 19.5 21.7
3 16-QAM 1/2 26.0 28.9
4 16-QAM 3/4 39.0 43.3
5 64-QAM 2/3 52.0 57.8
6 64-QAM 3/4 58.5 65.0
7 64-QAM 5/6 65.0 72.2

5.3.2 MAC features

802.11n related extensions of the MAC layer include changes in the frame format
and the addition of two types of frame aggregation that were introduced in order
to reduce MAC layer overhead: MAC Service Data Unit (MSDU) aggregation or
A-MSDU, and MAC Protocol Data Unit (MPDU) aggregation or A-MPDU.

MAC frame format

The MAC frame format is defined in the MPDU. Its original frame structure is
extended with an optional HT Control header field as shown in Figure 5.3.1. The
presence of this field is indicated by the Order subfield of the Frame Control
field [127]. Other new additions are the HT Capabilities and HT Operation
Information Elements (IEs), which are included in the Beacon frames of the AP,
and in the Probe Requests and (Re)Association Requests of stations [91].

The MPDU of the MAC layer is equivalent to the PSDU of the PHY layer. The
higher layer payload of the frame is included in the MSDU field of the MPDU.

Aggregate MSDU

With A-MSDU aggregation, the transmitter collects multiple MSDU subframes
from the Logical Link Control (LLC) sublayer and prepends them with an A-
MSDU subframe header, which is structurally equivalent to an 802.3 header: it
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(a) A-MSDU frame structure

(b) A-MPDU frame structure

Figure 5.3.2: Frame structure of A-MSDUs (a) and A-MPDUs (b).

contains the Destination Address (DA), Source Address (SA), and length of the
MSDU subframe as shown in Figure 5.3.2a.

The MSDU subframes are aggregated and transmitted in a single MPDU when
either the maximum A-MSDU size (7935 bytes) is reached, or when the trans-
mission delay reaches a predefined threshold. Each A-MSDU subframe must be
followed by a number of zero padding bytes, so that the length is a multiple
of 4 bytes. The final A-MSDU subframe has the A-MSDU Present flag in the
Quality of Service (QoS) header set to true. Furthermore, the DA and SA fields of
the MSDUs must be identical to respectively the Receiver Address (RA) and
Transmitter Address (TA) fields of the MPDU [127].

A disadvantage of this aggregation method is that it performs poorly in situations
where the packet error rate is high [101]. This is due to the fact that there is
only a single Cyclic Redundancy Check (CRC) for the entire aggregate frame.
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Aggregate MPDU

A-MPDU aggregation collects multiple frames from the MAC sublayer and ag-
gregates them in a single PHY frame of maximum 65,535 bytes. Here, each
subframe is prepended with an A-MPDU delimiter as shown in Figure 5.3.2b. As
with A-MSDU aggregation, each subframe is padded with zero bytes so that its
length is a multiple of 4.

For the subframes to be valid, they must have the same RA and Duration fields1,
i.e. the receiving host and frame lengths must be the same, and the same KeyID
field must be provided in case encryption is enabled. The maximum subframe
size is 4095 bytes [127].

The A-MPDU delimiter of a subframe is shown in Figure 5.3.2b, and contains
the following fields:

• Reserved: Unused bits with a possible future application.

• Length: Length of the A-MPDU subframe in bytes. This length can be 0
bytes, in which case the A-MPDU delimiter is used for padding purposes.

• CRC: 8-bit CRC of the Reserved and Length fields.

• Delimiter signature: Pattern that indicates the start of an A-MPDU sub-
frame. This pattern is defined as the ASCII value for the character ‘N’.

Note that contrary to A-MSDU aggregation, a packet error in one subframe
does not result in the entire aggregate frame being dropped. Instead, only the
erroneous subframe is dropped. If the subframe error occurred in the A-MPDU
delimiter, the 802.11n specification suggests that the next Delimiter signature
should be searched for according to the algorithm in Listing 5.1.

In essence, this algorithm searches for any A-MPDU delimiter signature on a
4-byte boundary. If a valid delimiter signature has been found, the recv_mpdu
function will be called. This function will check whether the value specified in the
CRC field of the A-MPDU delimiter is correct, and if so, strips the delimiter and
sends the number of bytes specified in the Length field of the A-MPDU delimiter
as an individual MPDU up to the MAC protocol driver for further processing.

1It should be noted that whether this requirement is enforced depends on the vendor’s
implementation.
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void parse_mpdu ( int length )
{

int of f set = 0;
while ( o f f set+4 < length )
{

i f (valid_mpdu_delimiter( o f f set ) &&
mpdu_len( of f set ) <= ( length − ( o f f set +4)))

{
recv_mpdu( of f set+4, mpdu_len( of f set ) ) ;
o f f set += 4 + 4 ∗ ((mpdu_len( of f set )+3)/4);

}
else
{

of f set += 4;
}

}
}

Listing 5.1: A-MPDU scanning and parsing algorithm [127, p. 2661]

Note that because this algorithm is performed by the hardware MAC component
of the chip, it is not possible to observe the A-MPDU in its entirety on the host.
Only the individual MPDUs will be visible to the firmware and driver of the
device.

Our hypothesis is that the above algorithm can be exploited by an attacker. Ob-
serve that since the symbol set and data rate used by the payload data is the same
as the symbol set and data rate used by the A-MPDU delimiter, a vulnerability
is introduced: if one subframe has an incorrect delimiter, the scanning algorithm
will overflow into the payload and parse this payload as if it were header data. An
attacker can therefore define their own subframe boundaries by using a specially
crafted payload.

5.4 Frame injection attack

We have investigated whether our hypothesis is correct and whether the A-MPDU
frame aggregation mechanism can be exploited in practice. We found that this
is indeed the case and demonstrate a proof-of-concept remote frame injection
attack. This attack allows an attacker to inject arbitrary frames into 802.11n
networks from any location, by leveraging the PIP technique [105] at the data
link layer. For this attack to succeed in practice, a number of conditions must be
true:
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• The last hop between the attacker and the victim transmits packets wire-
lessly.

• Encryption is disabled. In other words, the AP is an open network (e.g.
hotspot, internet cafe, airport, or other open AP).

• The AP and associated victim are configured for 802.11n operation.

In order to determine whether the network is vulnerable, the first two condi-
tions are trivial to determine. The last condition can be evaluated based on the
presence of the HT Capabilities IE (see Section 5.3.2). In all of the following
experiments we assume that these conditions are true.

5.4.1 Experimental setup

While testing the applications and success rate of our frame injection attack,
we used the setup depicted in Figure 5.4.1. Here, the attacker’s Linux machine
is connected to the internet via an Ethernet port. An AP is used to provide
internet access for the wireless network to which the victim is connected. For our
experiments we used four different models: a MikroTik CRS109 (AR9344 chip), a
Linksys E1200 (BCM5357C0 chip), a Sitecom WLR-3100 (MediaTek MT7620N
chip), and a Linux machine running hostapd (AR9271 chip). Each AP uses
Network Address Translation (NAT) to translate between internal addresses and
its external address, and is protected by a firewall.

Our victim’s Linux machine is associated to the AP with a TP-Link TL-WN722N
USB dongle, which uses the Atheros AR9271 wireless chip with the default open
source ath9k_htc firmware2. The setup was placed in an office environment
without any actively interfering stations.

5.4.2 Injection method

We now present our method for performing the frame injection attack. As a
first step, the attacker is required to craft a valid A-MPDU delimiter, subframe,
and padding as shown in the bottom part of Figure 5.4.2. The Padding fields
are necessary to align the current and any subsequent A-MPDU delimiters to a

2This firmware is available for download at https://github.com/qca/open-ath9k-htc-
firmware.

https://github.com/qca/open-ath9k-htc-firmware
https://github.com/qca/open-ath9k-htc-firmware
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Figure 5.4.1: Experimental setup

Figure 5.4.2: A-MPDU subframe injection

4-byte boundary as specified by the standard. Note that the length of the first
Padding field is dependent on the length of all previous bytes of the frame, and
hence on the link layer protocol used from the AP to the victim’s machine as
well. Based on the knowledge that the used link layer protocol will be 802.11
on the target network, the attacker can calculate the correct padding size. The
second Padding field can simply be calculated as 4− (mpdu_len mod 4).

Our crafted A-MPDU subframe can now be transmitted towards the victim. The
attacker can embed this subframe in any higher layer protocol payload, such as
an HTTP request. Ideally, we would like to trigger frame aggregation from the
AP to our victim, and inject as many frames as possible. Therefore, a possible
approach is to rapidly transmit repeated sequences of the crafted subframe to
the victim.

When the payload is transmitted over the wireless link at the last hop, there is a
non-negligible probability that part of the aggregated frame becomes corrupted,
for example due to frame collisions, transmission errors, or interference from
other radio protocols. If the corruption of any subframe is limited to only the A-
MPDU delimiter, its CRC field will be invalid, and the algorithm from Listing 5.1
will be performed by the hardware of the wireless NIC in order to recover any
following uncorrupted subframes of the aggregated frame. Hence, if a valid A-
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MPDU subframe delimiter crafted by the attacker is present in the payload at a
4-byte boundary, this data will be interpreted as an A-MPDU delimiter instead of
payload data. Figure 5.4.2 (top frame) demonstrates an aggregated frame where
the A-MPDU delimiter of a subframe is corrupted.

After parsing the attacker’s A-MPDU delimiter, the hardware will pass the ma-
licious subframe to the host or device firmware. It should be mentioned that the
Frame Check Sequence (FCS) of the injected frame must be correctly calculated
by the attacker, or the frame will be dropped due to an invalid FCS at the MAC
layer. However, this is trivial since the attacker has complete control over the
injected MPDU. A library can be used to calculate the correct CRC over the
injected MPDU.

In the work presented by Goodspeed et al.[104], frame injection in 802.11b net-
works is achieved by embedding an entire PHY frame in a higher layer protocol.
Using our methodology however, it is not required to include PHY layer head-
ers in the payload, because the injection happens at the MAC layer. The data
rate and scrambler state do not have to be guessed, and the same symbol set is
used for the distinction between frame header and frame data in our case. This
increases the attack surface and chance of success from a practical point of view.
The attacker only needs to make sure that A-MPDU aggregation is performed
when the AP transmits the frames to the victim. Exactly when or why frames
should be aggregated is not defined in the standard, and therefore depends on
the device driver or firmware implementation [91, 257]. In our experience, an
efficient method to trigger A-MPDU aggregation is to rapidly transmit pack-
ets of the same size to the AP. This was determined by means of a number of
experiments that we will discuss in Section 5.4.4.

5.4.3 Applicability

In Section 5.4 we mentioned that only open wireless networks, such as hotspots
and internet cafes, are vulnerable to our injection attack. At the time of writing,
this is about 10.61% of the total number of known wireless networks [281]. An
attacker would therefore have a reasonable chance of being able to inject packets
into a random network if they would probe a random IP address range. Note
that this may happen from any location or via a Wide Area Network (WAN)
such as the internet.

Besides targeting an open network, a second requirement is that the victim im-
plements A-MPDU frame aggregation in a 802.11n standard compliant manner.
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Table 5.4.1: Tested devices vulnerable to A-MPDU subframe injection. The top 7 devices
are client devices, whereas the bottom 3 are APs.

Device name Chipset
Intel Dual Band Wireless-AC 7260 7260HMW
TP-Link TL-WN722N AR9271
Netgear WNA1100 AR9271
CastleNet RTL8188CTV RTL8188CTV
K11 Mini RT5370
TL-WDN3200 RT5572
Nexus 5 BCM4339
MikroTik CRS109 AR9344
Linksys E1200 BCM5357C0
Sitecom WLR-3100 MT7620N

Since according to a research article by ABI Research 802.11n devices hold the
largest market share of the consumer Wi-Fi device shipments in 2013 [6], and
since A-MPDU reception support is a mandatory requirement in 802.11n [91], we
believe a significant number of devices will be vulnerable to our demonstrated
attacks. It should be noted that newer 802.11 standards, such as 802.11ac, im-
plement A-MPDU frame aggregation as well. Therefore, devices that implement
these standards will also be vulnerable. Table 5.4.1 shows the devices we tested.
All of them are indeed vulnerable to our attack.

5.4.4 Optimal aggregation triggering

The 802.11n standard specifies that the frame size or a timer could be used for
determining how many frames should be aggregated [127]. However, in practice
it is very difficult to determine exactly which packets will be aggregated and
which packets will be sent in the regular fashion, as this depends on the vendor’s
implementation. Moreover, the attacker has no means of measuring the properties
of the wireless link at the remote location, such as the Packet Delivery Ratio
(PDR), which can affect aggregation behavior as well [153].

From the attacker’s point of view it would be interesting to see whether a generic,
optimal transmission speed and frame size can be selected in order to maximize
the probability of aggregation at the remote AP, as this will increase the probabil-
ity of successful injection. We experimentally compared the aggregation behavior
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of the four APs from our setup with respect to these parameters. In each ex-
periment, we transmitted 250,000 frames from the attacker to the victim, and
checked how many of them were forwarded by the AP as A-MPDU subframes.

The MikroTik AP and hostapd machine respectively use the AR9344 and AR9271
Atheros Wi-Fi chipsets, which have a number of hardware queues that receive
frames from the firmware (AR9271) or driver (AR9344). Both chips aggregate
frames depending on the total number of frames currently in these queues [46,
203]. Note that neither a timer is used nor are frames aggregated based on their
size. Figure 5.4.3a shows the percentage of A-MPDU subframes transmitted by
the MikroTik AP, which appears to favor small frames for aggregation.

Figure 5.4.3b shows the percentage of A-MPDU subframes received by the host-
apd AP using the same setup. Despite the fact that this device implements the
same aggregation strategy, it is much slower at emptying the transmission queues,
which leads to increased aggregation – especially for larger frames. Therefore, the
performance of the device itself impacts aggregation as well, and is an additional
unknown to the attacker.

Finally, the Linksys AP (Figure 5.4.3c) and Sitecom AP (Figure 5.4.3d) respec-
tively use the Broadcom and MediaTek chipsets, which appear to use frame
aggregation more frequently. Since we observed that the aggregation rate de-
creases if the delay between successive transmissions increases, we can conclude
that transmitting frames rapidly is a good strategy.

5.4.5 A-MSDU injection

In Section 5.3.2, A-MSDU aggregation was briefly discussed. A similar vulnera-
bility in these kind of aggregated frames would allow an attacker to craft their
own MSDUs. However, we determined that this aggregation method is not vul-
nerable to our injection attack.

To see why this is the case, let us consider the A-MSDU header from Figure
5.3.2a, which is different from the A-MPDU delimiter. For the attack to succeed,
a random bit error must cause the Length field to become smaller, so that the
attacker’s payload is interpreted as the next A-MSDU header. This random
Length value cannot be predicted by the attacker, which is a first issue that
complicates exploitation.

Another consequence of not knowing the corrupted values from the previous fields
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Figure 5.4.3: The percentage of aggregated subframes received per 250,000 transmitted
frames from attacker to victim in our test setup shows that for the CRS109 and E1200,
using small frames results in a slightly higher aggregation rate, whereas for the TL-WN722N
and WLR-3100, using large frames results in a slightly higher aggregation rate.

is that the FCS of the MPDU cannot be calculated beforehand. An incorrect FCS
would then automatically lead to the entire frame being dropped, resulting in a
failed injection attack.

It should be noted that although the injection of A-MSDUs is unlikely to work
in practice because of the above reasons, there is a possible use case for them in
context of A-MPDU injection: the 802.11n standard specifies that an A-MSDU
can be embedded inside an A-MPDU subframe [127] in order to increase the
maximum size of the subframe. An attacker can therefore use this in order to
increase the injection payload of a single subframe.

5.4.6 Attack scenarios

We have proposed a methodology for frame injection that can be used to inject
arbitrary frames into a remote network. In this section, we will discuss two prac-
tical attacks that can be performed using this methodology. Our implementation
is written in Python, uses the Scapy library for crafting the payload, and is open
source [196].
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Host scan

In our first attack, we apply our frame injection methodology to perform a remote
scan for all active hosts on an internal network. We assume that the target
network to scan is behind a remote AP, and that at least one service is accessible
through this AP. This ensures that our payload will be sent wirelessly over the
air. In our case, we configured a web server on the victim of our experimental
setup. In practice this can be any service or open port, as long as the last hop
between the attacker and the victim is a wireless link. For this experiment, the
Sitecom AP was used, having its firewall configured to explicitly only allow HTTP
packets and drop ingress ICMP requests.

In the above scenario, an attacker can craft HTTP POST requests containing A-
MPDU subframes with ICMP echo requests as the payload, and transmit them
to our victim machine. Note that since we are injecting at the MAC layer, the
MAC address of the AP must be known3 and used as the TA, or else the packet
will be dropped by the victim. For the RA, the broadcast MAC address can be
used.

After several repeated transmissions, we observed that frame corruption indeed
caused the inner ICMP packet to be successfully received and replied to by the vic-
tim instead of the original payload, successfully bypassing the configured firewall
rule. By checking which clients reply, we can then iterate over each destination
IP address to perform a full host scan on the target network. A packet trace of
this experiment is available at [198]. Here, we were able to scan 52% of a /24
network in 122 seconds using 665 MB of data.

When testing this attack on our Linksys and Mikrotik APs, we noticed that the
ICMP replies by the victim were not forwarded to the attacker. The reason is
that these APs use stateful firewalls, and hence block outgoing ICMP replies if
there is no associated request. Nevertheless, even if stateful firewalls are used,
the ICMP requests were successfully injected and interpreted by the victim for
all tested APs and receivers.

Naturally, the injection of data frames is not limited to ICMP requests. An
attacker can choose any frame in order to perform other attacks such as a Denial
of Service (DoS) attack, Address Resolution Protocol (ARP) poisoning, or the
injection of 802.11 management frames such as Beacons and Deauthentication
frames. For each of the data frame related attacks to succeed, the attacker

3This could be done by looking up the SSID or location of the AP in a wardriving database
such as WiGLE.net [281]
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would need to know the Basic Service Set Identification (BSSID) to which the
targeted host is associated. This is essentially the MAC address of the AP’s
wireless interface. If the BSSID is incorrect, the targeted host will drop the
frame, which makes random attacks against an IP range infeasible. However, a
determined attacker could look up the BSSID in a wardriving database such as
WiGLE.net [281], and perform a targeted attack against a specific BSSID.

Beacon injection

Section 5.4.6 gave an example of how our frame injection attack can be applied if
the attacker has access to a service on the internal wireless network. However, in
practice this scenario is not very prevalent. It would therefore be more interesting
for an attacker to set up their own service, and lure the victim into accessing
it. As an example, the attacker can set up a web server and serve a binary
file containing malicious frames, which would be automatically downloaded by
anyone who visits the web page. As with our previous attack, these frames will
occasionally be interpreted by the victim due to interference on the wireless link.

The above scenario was tested using the same experimental setup from Fig-
ure 5.4.1. We set up a web server on the attacker’s machine and created a jpg
image containing Beacon frames with a specific SSID as the A-MPDU subframe
payload, though any other type of payload could have been used. Despite the
fact that sending management frames inside an A-MPDU is not standard com-
pliant [127], the frames were accepted by the victim machine upon injection. A
packet trace of this experiment is available at [197]. The trace shows a first
injected beacon frame after 47 seconds and 16 MB of transmitted data.

Contrary to our previous attack from Section 5.4.6, the attacker would need no
prior knowledge of the AP’s MAC address, since for Beacon frames the DA is
always ff:ff:ff:ff:ff:ff and the TA can be spoofed. The impact of such
attack can range from rather harmless, such as displaying a message in a remote
victim’s SSID list, to injecting a beacon frame with a malformed SSID. Such
malformed frames could trigger a buffer overflow vulnerability on the receiving
host4.

4An example is the heap-based buffer-overflow vulnerability found in NetGear WG311v1
wireless devices, which allows attackers to execute arbitrary code in kernel mode on the
host [148].
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5.4.7 Success rate

To determine whether our attack would be feasible in practice, we would like
to calculate the probability of successful injection. An injection is considered
successful when at least one subframe crafted by the attacker is received without
errors by our victim. Here we present both an analytical approximation and
experimental measurement of this probability.

Analytical approximation

Observe that the event of a successful injection occurs when any previous A-
MPDU subframe delimiter of the aggregate becomes corrupted due to interfer-
ence, as this will trigger the A-MPDU parsing algorithm. We assume that both
the probability of aggregation pa and probability of a single frame corruption pc
are known constants. After all, a significant amount of related work for analyt-
ically determining the probability pc already exists [26, 51, 153, 288], which is
outside the scope of this thesis.

Both of the input variables pc and pa can be modeled using Bernouilli trials. The
probability that a received frame is corrupted by interference can be written as
pc = 1 − qc, where qc is the probability that a single frame is received correctly.
If the frame is part of an aggregate, and becomes corrupted after transmission,
we can distinguish between three cases:

1. The PLCP header of the A-MPDU was corrupted. In this case the en-
tire A-MPDU would be dropped and the receiver would interpret neither
legitimate nor injected frames.

2. Any of the A-MPDU delimiter bytes were corrupted. This means that the
Length field of the current subframe will be ignored, and that the A-MPDU
parsing algorithm from Listing 5.1 will be performed to search for the next
valid A-MPDU delimiter.

3. Part of the subframe MPDU was corrupted. Here, the subframe in question
will be passed to the MAC layer, where it will be dropped because of an
incorrect FCS.

Let us now assume for the sake of clarity that each byte in the A-MPDU of
length La has the same probability of becoming corrupted. Given a corrupted
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frame and that the PLCP header is 6 bytes in length, the probability that the
corruption occurred in the PLCP header is 6

La
. By applying Bayes’ rule we get

pc · 6
La

as the unconditional probability. We would like to express this probability
per subframe instead of per aggregate, so the probability should be divided by
the number of subframes. This results in the following final probability pc· 6

La

La/Ls
.

In our second case, for any corrupt subframe of length Ls where 4 ≤ Ls ≤ La, the
probability that the A-MPDU subframe delimiter is corrupted is 4

Ls
. Analogous

to our previous case, the unconditional probability becomes pc · 4
Ls

. For an
entire aggregate, the probability that at least one delimiter becomes corrupted is
pc · La

Ls
· 4
Ls

.

Finally, we do not need to consider the third case, since it does not matter whether
part of the MPDU is corrupted or not: corruption of the A-MPDU delimiter
is sufficient to trigger the subframe delimiter signature scanning algorithm and
consequently, inject a subframe. For the victim to interpret the payload provided
by an attacker, the injected subframe itself must not be corrupted, which has the
probability 1− pc.

Putting everything together, the probability of injecting a frame pi and the num-
ber of successful injections per A-MPDU ni become:

pi ≈ pa · (pc ·
4

Ls
) · (1−

pc · 6
La

La/Ls
) · (1− pc) (5.1)

ni ≈ pa · (pc ·
4La

L2
s

) · (1−
pc · 6

La

La/Ls
) · (1− pc) (5.2)

A network administrator can use this model to approximate the success rate of our
attack on their network. The accuracy of the model depends on the choice of the
parameters pa and pc. As an example, these input variables will be approximated
for our experimental setup in the following section.

Experimental measurement

To experimentally determine the success rate for our setup, we repeatedly per-
formed our Beacon frame injection attack from Section 5.4.6 and compared the
number of successful injections with the number of acknowledged A-MPDUs.
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Figure 5.4.4: Repeated measurements of the malicious download attack with different
file sizes in our experimental setup show that the number of successful injections versus
the number of A-MPDUs acknowledged by the receiver is overestimated by our analytical
model when using the parameters pc = 0.08, pa = 0.03, La = 65535, and Ls = 1538, as
indicated by the green line.

Figure 5.4.4 shows the results of these measurements for 285 malicious jpg file
downloads of sizes between 30 MB and 500 MB via the MikroTik AP.

In our analytical approach from Section 5.4.7, we defined the frame aggregation
and corruption probability as two input variables for our model. If we would
like to predict the number of successful injections in a realistic environment,
these probabilities need to be measured, which is not trivial as they can vary
significantly between different trials of the same experiment.

As an example, Figure 5.4.5 shows the variations of the aggregation rate over
different trials, for 300 MB of transmitted data frames via the MikroTik AP.
It is this variation in the aggregation rate which “smears out” the x-axis of our
measurement of the number of successful injections from Figure 5.4.4. Thus, for
a fixed number of transmitted data frames, the number of received A-MPDUs
can vary greatly between different measurements.

The second input variable, the frame corruption probability, naturally varies
between different trials due to external factors such as contending stations and
other radio sources. Instances of poor channel conditions can lead to spikes in
the number of successful injections, such as the outliers that can be seen in the
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Figure 5.4.5: Experimental measurement of the number of acknowledged A-MPDUs versus
the number of acknowledged regular frames during a malicious download attack. Each point
in the data set represents a download of a 300 MB malicious jpg file.

boxplot of Figure 5.4.4 for 30,000 acknowledged A-MPDUs on the x-axis.

Despite the aforementioned random fluctuations, we can see that the median
number of successful injections increases with the number of received A-MPDUs
as expected. If we would like to predict the number of successful injections per
A-MPDU, our analytical approximation can be used to fit the experimental data.

Suppose we want to estimate the number of A-MPDUs to transmit in order to
have at least one successful injection in our experimental setup, given La = 65535
and Ls = 1538. The first step is then to determine the input variables for our
model, pc and pa.

For determining pc, it is easier to calculate 1− qc instead, where qc is the prob-
ability of receiving a packet without errors. This probability can be determined
by measuring the PDR at the receiver for a given time t. Previous work by Vla-
vianos et al. has shown that this is a reliable metric to measure the link quality
of a wireless network [270]. De Couto et al. define this metric as:

PDR(t) =
count(t− w,w)

w/τ
(5.3)
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where count(t − w,w) is the number of correctly received frames, excluding re-
transmissions, at the receiver and w/τ the total number of transmitted pack-
ets [72].

The PDR depends on several variables such as the amount of interference, trans-
mit power of the sender, distance to the receiver, the data rate, and the frame
size. Since the attacker only has control over the frame size, we would like to
measure the impact of this variable on the PDR.

Figure 5.4.6a shows the mean PDR for 50 repeated measurements per given frame
size, with 50,000 packets sent to the receiver in each iteration and a distance of
1 meter between the AP (MikroTik) and the receiver.

From previous work, we know that decreasing the packet size increases the
PDR [270]. In practice, the results can vary between measurements. For ex-
ample, observe in Figure 5.4.6a that the measurements with a frame size of 1534
bytes have about the same mean PDR as the measurements with a frame size of
42. Such variations can be caused by the rate controller of the AP, which lowers
the data rate in case of a suboptimal PDR. Figure 5.4.6b shows the impact of
the rate controller. Here, the mean PDR was calculated based on 50 repeated
measurements with 10,000 frames of size 1534, transmitted at a fixed data rate.
Indeed, the PDR is higher when the data rate is low.

Since the mean PDR was equal to 0.92 with the rate controller enabled during
our attack, we will use the value 0.08 as pc in our model. Next, we need to
determine the aggregation probability pa. We measured that this probability is
0.03 for Ls = 1534.

We now have all required inputs for our model. For an A-MPDU length of
65535 bytes, a subframe length of 1538 bytes including padding and A-MPDU
delimiter, aggregation probability of 0.03 and PDR of 0.92, ni ≈ 0.00025. This
means that on average, one injection will be successful per 4065 transmitted A-
MPDUs. The prediction is plotted as a green line in Figure 5.4.4, and appears to
slightly overestimate the actual measured number of successful injections; given
our assumptions and selected parameters.
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Figure 5.4.6: The mean PDR for our test setup generally decreases as the frame size
increases (a), but displays some variations. Such variations can be introduced by the rate
controller, which can improve the PDR by lowering the data rate (b).

5.5 Defensive measures

We have demonstrated in Section 5.4.6 how an attacker can use our injection
methodology to perform several attacks. We will now suggest a number of defen-
sive measures that network administrators and vendors can put in place in order
to mitigate these kinds of injection attacks. Since not all of these measures are
equally feasible, we will provide a comparison as well in Section 5.5.7.

5.5.1 Encryption

A simple solution for defending against our injection attack is to make use of MAC
layer encryption such as WPA2-AES. This method does not require modifications
to the firmware, driver or 802.11n standard, and is easy to implement.

When both encryption and A-MPDU aggregation are used, each MPDU of the
aggregate frame will be encrypted separately. Therefore, if A-MPDU delimiter
corruption occurs, the delimiter signature scanning algorithm will only see the
encrypted payload, which is evidently not equal to the payload created by the
attacker. Note that even if the attacker knows the master encryption key, it will
not be possible to inject frames from a remote location, since a unique key pair
is derived from the master key for each individual session. This session key is not
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known to the attacker.

5.5.2 Disable A-MPDU frame aggregation

Another effective defensive measure that can be implemented by network admin-
istrators is disabling A-MPDU frame aggregation. However, there are several
disadvantages that should be considered. Firstly, connected clients can no longer
benefit from the increased data rate provided by A-MPDU frame aggregation.
A-MSDU aggregation could be used as a less efficient [101, 248] alternative.

A second disadvantage is that, depending on the device, this method may require
modifications to the firmware or driver of the NIC. For example, on Linux systems
the mac80211 protocol driver needs to be modified to clear the IEEE80211_HW_
AMPDU_AGGREGATION flag. Performing such changes on all APs of a network is
practically infeasible, especially if the drivers or firmware are proprietary.

5.5.3 Drop corrupted A-MPDUs

Some chipsets, such as the AR9271, set a certain register flag when a subframe
delimiter error has occurred. The firmware or device driver can be modified to
drop the entire A-MPDU in case this flag is set, similar to how an A-MSDU
would be dropped in case of an error. However, this would cause an impact
on performance that depends on the probability that an error will occur in any
A-MPDU delimiter.

5.5.4 LangSec stacks

As mentioned by [103], LangSec stacks can provide a robust defence against PIP
attacks. These network stacks essentially use formal language theoretic methods
for input validation. Previous research by Sassaman et al. [227] shows that by
treating inputs to network protocol stacks as simple to parse input languages,
the security can be improved or even guaranteed. An example that is frequently
referred to in this research is Structured Query Language (SQL) injection, where
treating the user input as executable code can completely mitigate injection at-
tacks.

In context of LangSec, we use the notation M for a message, D for a decod-
ing function, and E for an encoding function. The 802.11n aggregation mech-



5.5. DEFENSIVE MEASURES 81

anism can now be described as D(E(M)), where M is a list of MPDUs, E is
the aggregation process or the addition of the A-MPDU delimiters, and D is the
deaggregation process or the removal of the A-MPDU delimiters. Naturally, the
intended behaviour by the designers of the frame aggregation mechanism is that
D(E(M)) = M , or in other words that list of MPDUs is not altered after the
aggregation process. However, the introduction of random noise on the wire-
less channel then gives us the probability that E(M) is altered and hence, that
D(E(M)) ̸= M which introduces a frame injection vulnerability as we saw earlier.

From a language theoretic point of view, an effective defensive measure against
our injection method would be to design a recognizer that can parse a frame
unambiguously with minimal computational overhead. For MAC frames sent
over a wireless link, this is harder to accomplish compared to SQL query input,
because if regarded a language, a frame has a much more complex grammar
than a SQL query. Furthermore, SQL query input is usually already protected
from transmission errors by underlying layers such as TCP. Conversely, MAC
frames are sent over unreliable channels. In case of corruption, a frame header
or delimiter can become indistinguishable from the frame data, since the same
modulation and encoding is used for the entire aggregate, and since boundaries
are defined by Length fields which may become corrupted as well. A valid MPDU
M2 can then exist so that M2 = E(M1), and consequently, D(M2) becomes a valid
operation.

One solution to this problem comes in the form of an encoding technique that fa-
cilitates unambiguous encapsulation, which was proposed by Ossmann et al. This
technique, named Isolated Complementary Binary Linear Block Codes (ICBLBC),
uses codes of a certain Hamming distance, for example (5,2,2) codes, with an ad-
ditional unique “isolation” property. Such codes can be divided into two groups,
where each codeword in one group is isolated from any codeword of the other
group by a Hamming distance of 3. The first group of codewords can then be
used for the header, and the second for the payload. In this example, the Ham-
ming distance between the two groups ensures that up to two bit errors can
exist without breaking the isolation between header and payload [103, 184, 185].
Though we believe this method is an effective defence, it is difficult to implement,
as the hardware of the wireless NICs needs to be modified to implement the new
coding scheme. Such modifications also need to be uniformly implemented by all
802.11 devices, and therefore a standard amendment is required as well. Finally,
the overhead of the extra isolation bit in the code would lead to a slight impact
on the performance.
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5.5.5 Modulation switch

A different technique that can be used to achieve isolation between header and
payload is switching between modulation schemes. Similar to how the modulation
scheme switches from DBPSK in the PLCP preamble to Quadrature Amplitude
Modulation (QAM) in the MPDU, the A-MPDU delimiter could be transmitted
using a different modulation scheme than the subframe itself. Given that no
symbols from the header modulation scheme can be created by using the payload
modulation scheme, it will be impossible to inject payload data that can be
interpreted as a header.

This approach is the least practical, since it would require changes in the standard
and costly hardware modifications. Additionally, backwards compatibility with
existing devices would be lost.

5.5.6 Deep packet inspection

Since a large number of packets typically need to be transmitted by the attacker
before injection can be successful, a spike in network activity might be flagged
by an Intrusion Detection System (IDS) as unusual, and the attacker could be
blocked consequently. However, in our experience, transmitting a large number
of frames is not always necessary for the attack to succeed. Moreover, in some
networks, high loads of traffic might be commonplace.

A more effective approach would be to perform deep packet inspection. The
IDS can look for payloads that resemble 802.11 headers and drop those packets.
Disadvantages of this method are that expensive hardware is often required, and
that the processing required to validate packets could introduce latency.

5.5.7 Comparison

Table 5.5.1 summarizes and compares all of the proposed defensive measures
in terms of advantages. In this table, the filled portion of a circle denotes the
presence of the advantage. A transparent circle means that the advantage is
absent.

From the table we can derive that using encryption is the simplest and most
effective measure. The only disadvantage is that users will have to provide some
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Table 5.5.1: Comparison between the proposed defensive measures.
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type of credential, for example a username / password combination or secret
key, before the network can be joined. It should be mentioned however, that
this disadvantage can be removed by deploying a technology such as Wi-Fi Pass-
point [275].

5.6 Chapter conclusions

We identified a vulnerability in the A-MPDU frame aggregation mechanism of the
802.11n standard (RG1), which allows information to leak from higher layers of
the Open Systems Interconnection (OSI) stack to the MAC layer. Based on this
vulnerability, we demonstrated a novel and practical frame injection attack that
can be remotely performed against open Wi-Fi networks which support 802.11n
(RG2), yielding C2. Additionally, we have shown two example attack scenarios
using our injection method. We then demonstrated that the success rate of this
attack depends on the frame corruption probability or link quality of the target
network, and on the probability that a frame is aggregated between the last hop
and the victim host. We have experimentally determined that for maximizing the
probability that a frame becomes corrupted, large frames should be transmitted
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at a high data rate, whereas for maximizing the aggregation probability, the ideal
frame size depends on the device model. Finally, with regard to RG3, several
defensive measures that can be applied to mitigate the attack were described and
compared.
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6.1 Introduction

Techniques for tracking the whereabouts of IEEE 802.11 standard-compliant
mobile devices can be employed for several benign use cases, such as position-
ing [135, 155, 199, 283], asset tracking [82, 289], travel time estimation [5] and
behavioral modeling [33]. These use cases inspired the creation of numerous star-
tups and commercial products such as Skyhook1, Wifarer2, YFind and Nomi3,
as well as a substantial amount of academic research. Wi-Fi based tracking is
furthermore often chosen in favor of other technologies because of low battery
consumption, low cost, passive monitoring capabilities of personal devices, and
widespread presence of Wi-Fi chipsets, which is likely to further increase due to
the current IoT trend. However, tracking systems can unfortunately also be used
maliciously to non-cooperatively or involuntarily disclose the location of mobile
device users to an adversary, compromising their privacy.

From the perspective of the tracked device, location tracking systems can be
divided into two categories: cooperative and non-cooperative location tracking
systems. In cooperative tracking, the mobile device is aware that it is being
tracked, and actively cooperates with the location tracking system to determine
its correct location. In Android phones for example, when the “high accuracy”
location mode is enabled, the device will determine its own location by combining
information from nearby Wi-Fi APs, cellular networks, or the Global Positioning
System (GPS) chipset.

On the other hand, in non-cooperative tracking systems, the mobile device is
unaware of the fact that it is being tracked, no existing infrastructure is modi-
fied, and the mobile device does not cooperate with the location tracking system4.
Instead, the location tracking system relies on information leaks from radio trans-
missions captured by one or more Monitoring Stations (MSs) to track the location
of a mobile device, thereby creating the opportunity for malicious exploitation
by an adversary. A remote positioning system topology as described by Liu et
al. [155] can for example be used for this purpose [5, 33, 62, 176].

In this work, we will study two aspects of non-cooperative tracking: how mobile
devices can be fingerprinted and deanonymized by a MS based on information

1http://www.skyhookwireless.com/
2http://www.wifarer.com/
3http://www.nomi.com/
4This type of tracking is referred to as infrastructure-less terminal-based Location Finger-

printing (LF) in Kjærgaard’s taxonomy of location tracking technologies [134], or as “involun-
tary tracking” or “non-collaborative tracking” in other works.

http://www.skyhookwireless.com/
http://www.wifarer.com/
http://www.nomi.com/
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leaked from a single observation of a Wi-Fi frame, and how their transmission
frequency can be artificially increased so that the number of observations by the
MS is increased. We demonstrate a variety of techniques that exploit protocol
design flaws and chipset implementation vulnerabilities to achieve these goals.
Furthermore, we focus on tracking systems that operate on the data link layer
(specifically, the MAC sublayer). These systems have the advantage of being
deployable in software on commodity hardware as opposed to PHY layer based
tracking (see [71] and the references therein), where specialized equipment is
needed. For higher layer (e.g. transport or application layer) based tracking, the
device that is being tracked must be associated to a Basic Service Set (BSS),
and the frame payload must be transmitted in plain text. This was rarely the
case anymore at the time we conducted this study, as according to WiGLE only
7.95% of wireless networks did not use encryption [280].

The structure of this chapter is as follows. Section 6.2 entails general background
information about the principles and topology used in non-cooperative tracking.
The role of fingerprinting in non-cooperative Wi-Fi tracking is discussed as well.
In Section 6.3, we examine the types of device identifiers present on the PHY and
MAC layer. Furthermore, we introduce a novel technique that can be used to
defeat MAC address randomization based on a single frame observation from the
transmitting device (RG1). Section 6.4 will then discuss both novel and existing
techniques for increasing the frame transmission frequency from tracked devices.
The effectiveness of the discussed techniques is evaluated and compared against
methodologies from earlier works in Section 6.5 (RG2). A discussion of which
countermeasures should be implemented by vendors is detailed in Section 6.6
(RG3). In Section 6.7, we will discuss related work, and finally, the conclusions
are discussed in Section 6.8.

Our contributions

Considering research goals RG1 and RG2, our first contribution is an entropy-
based metric for measuring information leakage in 802.11 MAC-layer frame bits,
specifically of the IE bits contained within Probe Request frames (C3). We
then use this metric in a detailed analysis of 200,394 Probe Requests to identify
the frame bits that are the most useful for constructing a per-device fingerprint
(C4), and quantify the uniqueness of this fingerprint. To the best of our knowl-
edge, this approach has not been considered before in previous works. Next, we
demonstrate how an adversary can exploit this information leakage in practice,
in order to track users involuntarily without changing the existing wireless net-
work infrastructure, while using only commodity hardware. We further demon-
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strate how this technique can be used to defeat MAC address randomization and
deanonymize users.

Following our per-bit analysis, a second novel technique that can be applied to
instigate extra transmissions from a tracked device is detailed (C5). More specif-
ically, we show that “Hotspot 2.0” devices supporting the 802.11u amendment’s
Generic Advertisement Service (GAS) or devices that incorrectly handle 802.11e
Block Acknowledgement (BA) frames can be actively probed, so that their pres-
ence is unwittingly exposed to a tracking system.

The aforementioned techniques are experimentally evaluated on two datasets, of
which the first was recorded at Glimps 2015, a Belgian music festival in the city
of Ghent, and the other at our research lab. Both datasets and the code are made
available to the public domain in an anonymized format such that the true iden-
tity of the devices or persons involved in the experiment is not revealed (C10).
Finally, considering RG3, we also present several countermeasures against these
non-cooperative tracking techniques in order to minimize information leakage
and thus improve the privacy of the user.

6.2 Background

Recall that in non-cooperative tracking, the mobile device is unaware that it
is being tracked, and does not actively assist the location tracking system in
determining its location. In this case, a topology as shown in Figure 6.2.1 can be
used.

Here, the tracking system consists of several MSs spread out over a number of
known and fixed geographical locations. Since the locations of these MSs are
known, radio signals transmitted by a target device can be captured by the MS
and roughly mapped to the MS’s location [33, 176, 191]. In this scenario, the
accuracy of the exact location of the tracked device depends on several factors,
such as the gain of the receiving MS’s antenna, carrier frequency, the transmit
power of the tracked device, and environmental factors. A high range results
in a higher probability to detect a device’s transmission, but will decrease the
location accuracy and vice versa. If location accuracy is crucial for the applica-
tion, other techniques such as Time Difference Of Arrival (TDOA) with multiple
synchronized MSs could be used to improve the location accuracy [17, 102, 283].

The effectiveness of a non-cooperative remote positioning topology depends on
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Tracked station

Monitoring station

Tracked station

Monitoring station

Monitoring station

Central server

Figure 6.2.1: An example of a non-cooperative position tracking topology. Several low
to medium range Wi-Fi MSs with known positions are connected to a central server via
a Local Area Network (LAN) or the internet. The system can track a roaming target by
intercepting signals transmitted by the device and mapping those detections to the location
of the corresponding MS.

three criteria: a monitored device must be uniquely identifiable, its identifier must
remain stable over time, and the identifier must be transmitted at a minimal
frequency, preferably as often as possible.

Firstly, the unique identification requirement follows from the fact that the lo-
cation tracking system must be able to differentiate between multiple observed
devices. Here we can make the distinction between globally unique identifiers,
which are permanently unique versus local identifiers, which are only unique for
a limited duration or session. In the literature, the study of uniquely identifying
a device is commonly referred to as “fingerprinting”. We will use this terminol-
ogy from now on. In order to create a unique fingerprint, MSs must analyze
externally observable properties from frames that are transmitted by the target
device. When these properties are intended or designed to uniquely identify a
device, they are called explicit identifiers. An example of an explicit identifier is
the MAC address. On the other hand, if the ability to fingerprint a device from
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this property is unintentional, it is an implicit identifier5 [191]. Identifiers are
present in many shapes and forms on both the PHY and MAC layers of 802.11
frames, as will be shown in Section 6.3.

Secondly, stability of the identifier over time means that the identifier must re-
main either identical or correlatable to previous values for a sufficiently long
duration. Indeed, the same device identifier must be detected by at least two
different MSs before assumptions about the path traversed by the device can be
made. A globally unique identifier for example is always stable.

Finally, the identifier must be transmitted as often as possible in order to increase
the probability of detection. This is especially important if the target device is
moving fast, since the device might move out of range even before it had the
chance to transmit its identifier. We will henceforth refer to this property as the
transmission frequency of the device.

6.3 Identifiers and fingerprinting

Identifiers are important in fulfilling the requirement that a MS must be able to
differentiate between multiple observed devices. Moreover, when explicit identi-
fiers are unavailable (e.g. because of MAC address randomization), the MS can
only rely on implicit information to construct a fingerprint for the observed de-
vices. If these fingerprints are unique to such a degree that frames transmitted by
a particular device can be linked together without explicit identifiers, the device
is said to be deanonymized. In this section, we will explore earlier approaches
to PHY and MAC layer fingerprinting. In Section 6.3.3, we will discuss our
own methodology for constructing a fingerprint of a device without using explicit
identifiers. Later, in Section 6.5.2, we will see how this approach can be used to
deanonymize devices in practice.

6.3.1 PHY-layer fingerprinting

Identifying a device based on PHY-layer properties typically relies on the analy-
sis of either a raw radio signal transmitted by the device or the baseband signal
(e.g. for Wi-Fi, the PLCP data). Unfortunately for the tracker, these PHY-layer

5Note however that despite the term “implicit”, these identifiers are still a form of explicit
information leakage according to our definition, since they are not the result of inherently
measurable side effects of a (hardware) implementation.
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properties cannot be easily extracted from a frame, since in most conventional
chipsets the PHY layer is implemented in hardware for performance reasons.
Therefore, this type of data is typically not accessible via the driver or firmware
of the chipset. A signal analyzer or SDR can be used instead, in order to cap-
ture the raw radio signals and demodulate them in software [38]. Although this
approach can yield highly unique fingerprints (depending on the measurement
capabilities of the tracker), the required hardware is typically more expensive,
requires more compute power compared to using off-the-shelf devices, is more
sensitive to channel noise and interference, and requires more complex pattern
matching algorithms to derive a meaningful fingerprint from the radio signal. A
more detailed description of how a device can be fingerprinted using PHY-layer
properties will be given in Chapter 8, where we discuss a machine learning based
approach to fingerprint LoRa signals captured by an SDR. Other approaches
have been proposed several earlier works, where we can distinguish a variety of
PHY-layer properties from which a fingerprint can be derived:

Time domain analysis In a time domain analysis of a transmitted signal, de-
vices are classified using differences between the amplitude, phase or fre-
quency of the wave transients. This technique can identify a device given
that its fingerprint is known to the classifier [115, 263].

Frequency domain analysis Brik et al. compare small frame imperfections in
the modulation domain with an ideal PHY frame modulation. However,
a Support Vector Machine (SVM) classifier must be trained to recognize
the device beforehand, using a set of 20 frame – MAC address pairs [38].
In the work presented by Corbett et al., a Power Spectral Density (PSD)
analysis is performed, which captures the power or spectral density that a
signal has over a range of frequencies. The PSD is calculated for each of
the devices to be fingerprinted [61].

Clock skew Inherent drifts in the hardware clock of a device, caused by varia-
tions in the manufacturing process, can be measured and then utilized as
a fingerprint [10, 130, 139]. However, in context of 802.11 this technique
relies on timestamps extracted from Beacon and Probe Response frames,
which are only transmitted by APs.

Scrambler seed The 802.11 scrambler is a Pseudo-Random Number Generator
(PRNG), implemented as a 7-bit Linear-Feedback Shift Register (LFSR),
that is XORed with the frame payload in order to obtain a uniform dis-
tribution of bit values. It is used in Orthogonal Frequency-Division Multi-
plexing (OFDM) modulation to improve the Peak-to-Average Power Ratio
(PAPR), and in turn to reduce the packet error rate. Bloessl et al. and
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Vanhoef et al. show that predictable scrambler states can be used to track
mobile devices [29, 268]. However, this assumes that the scrambler seed
is variable6, and that the chipset vendor has implemented the scrambler
so that it behaves in a deterministic, predictable manner. Furthermore,
if the tracked device cannot be observed continuously, linking the scram-
bler states of two transmissions originating from the same device becomes
increasingly difficult.

Observe that for each of these PHY-based approaches, the implicit identifiers
of a device need to be determined in some preprocessing step [71], before the
device can be uniquely detected reliably at a later stage. Furthermore, mul-
tiple observations are often required before a device can be correctly classified.
These properties render PHY-based approaches impractical for non-cooperatively
tracking devices at a large scale.

6.3.2 MAC layer fingerprinting

In contrast to PHY layer fingerprinting, MAC layer fingerprinting does not require
raw radio signals to be analyzed in order to uniquely identify a device. Instead,
one can use off-the-shelf Wi-Fi hardware such as a USB dongle to process the radio
signal and analyze the resulting MAC layer data. For this reason, MAC layer
tracking is particularly attractive to the industry, which according to Kjærgaard
et al. desires systems that “have low maintenance, allowing positioning of all user
devices, regardless of platform and form factor” [135]. The MSs used in MAC
layer tracking systems are typically configured in monitor mode so that frames
are forwarded to user space regardless of their destination MAC, and a Radiotap
header with frame metadata is prepended to the packet.

MAC address

A common identifier for fingerprinting a device on the MAC layer is the MAC
address, which is disclosed by devices on a regular basis via transmitted frames,
even when the device is not associated to an AP. Examples are Probe Request
frames, which are transmitted by a client device in order to exchange IEs with
the AP and detect their presence. The advantage of tracking a device based on
the MAC address is that it is inherently a globally unique identifier per NIC,

6This is not the case when Direct-Sequence Spread Spectrum (DSSS) modulation is used,
e.g. when transmitting Probe Requests in the 2.4 GHz band [268].
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which explains why it is so commonly used in existing tracking systems [5, 33,
34, 62, 63, 176, 191].

However, tracking systems that solely rely on the MAC address as an identifier
can be easily thwarted by employing MAC address randomization. With this fea-
ture, the device temporarily sets a random, locally unique MAC address before
the active scanning procedure (i.e., before transmitting Probe Requests) [110].
This may be implemented by the device vendor in several ways, since the proce-
dure is not explicitly stated in the 802.11 standard [127, p. 980]. For example, the
MAC address can be randomized for each Probe Request, or only once before
association with an AP. Moreover, some implementations randomize the entire
MAC address, whereas others keep the OUI part of the MAC address identi-
cal7. Random MACs should have their “locally administered address” bit set
to one [127]. After the scanning procedure, i.e. when the device is associating
with an AP, the non-random MAC is typically reused in order to prevent MAC
address collisions or network disruptions when roaming [110].

MAC header information

Despite the fact that MAC address randomization mitigates the issue that the
MAC address can be used as a unique identifier, some devices can still be uniquely
identified even when MAC address randomization is enabled. This can be ac-
complished by exploiting implementation quirks, for example by correlating the
802.11 frame Sequence Number [47, 112, 268] or Duration field [40] if these fields
are not randomized.

Several other fields and properties from the MAC frame header have been pro-
posed in previous works as implicit identifiers, such as combinations of the frame
size [178, 191], “more fragments”, “retry”, “power management” and “order”
bits in the header, the authentication algorithms offered, and the used transmis-
sion rates [191]. However, the per-bit uniqueness and stability of these identifiers
in context of devices in the unassociated state has not been studied before. In
Section 6.3.3, we will demonstrate our methodology for determining the suitabil-
ity of an identifier in an automated fashion.

7In wpa_supplicant, the most popular 802.11 supplicant for Linux and the default supplicant
for Android devices, this randomization behavior can be configured through the parameters mac_
addr, rand_addr_lifetime, and preassoc_mac_addr [13].
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Timing variations

Differences between implementations or hardware can cause slight timing varia-
tions that can in turn serve as useful implicit identifiers. For example, the Timing
Synchronization Function (TSF) in Beacon frames from an AP can be used to
measure the hardware clock skew, which is different for each device due to vari-
ations in the manufacturing process [10, 130]. However, this timing information
cannot be extracted from non-AP stations (STAs), since they do not transmit
the TSF.

For non-AP STAs, timing differences between the observations of Probe Request
frames have been considered to differentiate between implementations [62, 76, 87,
168]. Even so, these timings are usually not unique per device, and they can be
influenced by other factors such as whether the screen is on or whether the Wi-
Fi chipset is in sleep mode [88]. A more generalised time-based fingerprinting
approach where timing information is extracted from the Radiotap headers of
the MS was proposed by Neumann et al. [178]. Here, the medium access time,
transmission time and frame inter-arrival time are derived from the Radiotap
header timing information in order to construct an implicit identifier.

Information elements (IEs)

IEs are TLV fields that are embedded in Probe Requests and Beacon frames.
They contain information about the STA such as the supported data rates, SSID,
capabilities, vendor-specific data, etc. and are therefore a plentiful source of im-
plicit identifiers [268].

One example is the SSID IE, which is used in a Probe Request to indicate
the SSID that is addressed. An SSID of length 0 can be used to indicate the
wildcard (any) SSID [127, p. 478]. When a rare SSID, denominated in some
works as a Personally Identifying Wireless Network (PIWN) [62], is observed
or when multiple common SSIDs are observed in a particular order for a single
device, the MS can build a fingerprint based on these observations [63, 191].

6.3.3 Per-bit MAC header analysis

In each of the approaches from Section 6.3.2, a relatively small number of bits is
chosen as the uniquely identifying information, and the remainder of the frame is
discarded. Instead of manually defining which bits are suitable for fingerprinting
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a device and which are not, it would be interesting to automatically learn the suit-
ability of a bit from a set of observations. We will now present our methodology,
which aims to accomplish this goal.

In our methodology, a score is assigned to each bit of the MAC frame based
on its potential as an identifier. The most suitable bits are then combined to
construct a bitmask for each frame field. As such, new or rare fields used by only
a handful of devices are automatically incorporated into the resulting fingerprint,
independently of the header field order or underlying protocol semantics. If
performance is critical, it is possible to perform the per-bit analysis on a small
“training” subset, and utilize the resulting bitmask to fingerprint the remainder
of the dataset (see Section 6.5.2).

Our approach originates from the observations that we made in Section 6.2, i.e.
that any set of field bits from an 802.11 frame could potentially be exploited to
form a unique identifier, as long as the bits differ sufficiently across devices to
become locally unique (bit variability) and remain consistent or at least related8

over the duration required by the tracking system (bit stability).

For the tracked device, we assume that it may randomize its MAC address for
every transmitted frame, i.e. MAC address randomization is enabled and cor-
rectly implemented. Therefore, our analysis requires only a single frame from the
tracked device in order to construct a fingerprint. Moreover, we assume that the
tracked device is in the unassociated state, causing it to only receive and transmit
Class 1 frames. This class of frames will be discussed in detail in Section 6.4.1.

Let us now define what a “uniquely identifying bit” entails exactly. We define
three metrics that will henceforth be used in our analysis: the variability or
uniqueness of a bit, the stability of a bit, and the suitability of a bit.

Calculating the variability

The variability of a bit is the entropy of that bit measured over multiple MAC
frames, each of which is transmitted by a different device. Only one frame should
be considered per device in order to prevent a frequently transmitting device
from biasing the result, and only non-random MACs should be considered in
this learning phase for the same reason. The goal of the variability metric is to
indicate which bits provide unique contributions to the fingerprint.

8For example, when using the sequence number from 802.11 frames, the value will not be
identical in each transmission but it will be related to the previously transmitted frame.



96 CHAPTER 6. MAC-LAYER TRACKING OF MOBILE DEVICES

To calculate the variability of the bit at position i in a frame, we will first calculate
the discrete probability density function P (Xi) for each bit value at position i. Let
Xi be the random variable that represents a bit value. Then Xi ∈ {0, 1, U}, where
a bit value of U denotes the absence of a bit. The probability density function
can subsequently be used to calculate the Shannon (information) entropy:

H(Xi) = −
∑

x∈{0,1,U}

P (Xix) log3 P (Xix) (6.1)

Note that we use a base 3 logarithm since we have a tri-state bit instead of a
conventional bit. The tri-state bit is used to ensure that the absence of a bit is
also counted as a different bit value. Now H(Xi) will be a value between 0 and 1
where 0 indicates no entropy and 1 indicates maximum entropy. The result can
be represented as a variability vector v per bit:

v = [ H1 H2 · · · Hn−1 Hn ] (6.2)

where n is the number of bits in the frame and Hn is the entropy of bit n.

Calculating the stability

We define the stability of a bit as one minus the entropy of that bit measured
over multiple MAC frames transmitted by the same device. The stability gives
an indication of how likely it is that a bit will stay the same over multiple trans-
missions by the same device. The goal of the stability metric is to exclude those
bits that are associated with the same device but change frequently.

The stability for a certain bit of the frame transmitted by a device is calculated
analogous to Equation 6.1. The result can be represented as a stability vector s
per device d:

sd = [ 1−Hd1 1−Hd2 · · · 1−Hdn−1 1−Hdn ] (6.3)

As opposed to the variability, a higher entropy is unfavorable as it means a lower
bit stability. Hence, we measure the stability of bit i as 1−H(Xi). Finally, recall
that contrary to the variability, we calculated the stability per device. Hence, the
stability vectors sd for each device are averaged into a vector s, resulting in the
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final average stability vector per bit.

Combining variability and stability to form a fingerprint

Ideally, the bits used in our fingerprint should both be highly variable and highly
stable. We will now discuss two possible approaches to combine these metrics
into a new metric which we will define as the suitability, denoted as the vector
u. Both approaches can be used in practice, as we will discuss in the coming
sections.

Probabilistic approach Since both the variability and stability are values in
the interval [0, 1], we can interpret them as probabilities of the bit being suitable
for use in a fingerprint. Assuming that variability and stability are independent
variables, we can then multiply the variability and stability to obtain the final
suitability:

u = v ⊙ s (6.4)

For example, a bit with 1.0 variability and 1.0 stability is ideal and therefore
has maximum suitability, whereas a bit with 1.0 variability and 0.0 stability is
completely unsuitable for fingerprinting a device.

Filtering approach Considering that stability is a desired feature, another
possibility is to interpret the bit variability itself as the suitability, on the condi-
tion that the stability is better than a user specified threshold λ.

ui =

{
vi, if si ≥ λ

0, otherwise
(6.5)

For example, if λ = 1, this approach ensures that the suitable bits that are
combined in the fingerprint will always remain stable over time.

The threshold λ essentially determines the tradeoff between uniqueness of the
fingerprint and stability of the fingerprint, which will be discussed in Section 6.3.3.
Bits with a suitability greater than zero are used in a per-IE bitmask, which is
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applied to each frame received from a device. The result of the mask operation
is then concatenated and used as the final fingerprint.

Information Element analysis

In Section 6.3.2 we briefly mentioned that IEs are exchanged between the AP
and client STAs via Probe Requests and Probe Responses. Due to the large
quantity of potential implicit identifiers in IEs (e.g. in the supported rates, SSID,
capabilities, vendor specific data, etc. IEs), it would be interesting to analyze
which bits of which IEs are the most variable and stable. For that purpose, we
can use the metrics discussed in the previous section.

An issue that should be considered beforehand is that although IE TLVs are
usually transmitted in ascending order of the IE type, we have observed that some
implementations transmit different orderings of IEs. If the order is disregarded,
this would consequently cause the bit variability and stability to be derived from
different IE types in some cases.

Therefore, to get an idea of exactly which bits per IE type contain uniquely
identifying information, we need to compute their suitability separately per IE
type. That is, we split the Probe Request into its IEs and perform our analysis
separately for each IE type. Later, when constructing the fingerprint for a device,
the order in which the IEs appeared should still be considered, because this order
itself is a piece of uniquely identifying information [268]. We achieve this by
introducing a “dummy” IE type to the fingerprinting algorithm, which contains
a concatenation of the IE type bytes in the order in which they appeared.

To get an idea of which IEs are the most suitable to be used in a fingerprint,
we have performed our bit entropy analysis using a dataset of 200,394 Probe
Requests collected at our research lab. Table 6.3.1 shows the total variability and
instability for each IE type. Figure 6.3.1(a) graphically shows the bit variability
for the first 256 bits of each IE type. We can clearly see that the most variable bits
come from the SSID IE and the Vendor Specific IE. For the SSID IE, also note
that each first bit per byte of the SSID field has less entropy than the other bits.
This is because all SSID strings that we observed were ASCII encoded. Other
useful sources of uniquely identifying bits are the capability IEs: the capabilities
of the device will be different depending on the used Wi-Fi chipset.

Figure 6.3.1(b) shows the bit instability9 for the same number of bits. As ex-

9We chose to visualize the instability, since the majority of bits are stable, and plotting all
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Table 6.3.1: An overview of the total bit entropy sum for each observed IE type. Note that
the sum of bit entropies does not take correlations between bits into account. It should not
be confused with the overall information entropy of the IE values.

Information Element Σvi Σ1− si

AP Channel Report 0.000 0.000
DS Parameter set 0.625 0.411
Extended Capabilities 32.790 0.061
Extended Supported Rates 28.373 1.716
HT Capabilities 13.299 0.176
Information element order 40.327 2.529
Interworking 32.491 0.000
RSN Information 0.000 0.000
SSID parameter set 87.570 30.590
Supported Rates 22.529 1.317
VHT Capabilities 10.424 0.000
Vendor Specific 285.449 135.288

pected, the SSID IE is unstable because the SSID field in a Probe Request is
often different for each individual probe. Likewise, a large portion of the Vendor
Specific IE is very unstable, which means that these bits are unlikely to be
useful in long term fingerprints. At the same time, some bits from the Vendor
Specific IE are stable and highly variable, making them interesting uniquely
identifying bits.

Note that some of the capability IEs have a very small amount of instability.
This is an interesting result, because we would not expect capabilities of the
Wi-Fi hardware to change. We believe that some vendors modify the announced
capabilities of the device in order to enforce some kind of behavior from the AP
(e.g. announcing support for low data rates only, in order to improve reliability
or range at the expense of data rate).

Discussion

The user defined threshold λ can be tweaked according to the needs of the location
tracking system. If fingerprints that remain stable for an extended duration are

stable bits would hence clutter the heatmap.
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Figure 6.3.2: Graphical representation of the tradeoff between variability and stability,
which can be controlled via λ. Incorporating more stable bits in the fingerprint increases
stability of the fingerprint at the expense of fingerprint variability.

required, λ can be increased. This will cause bits with a stability above the
threshold to be exclusively incorporated into the fingerprint, trading stability
for variability in the process. The tradeoff between variability and stability is
depicted graphically in Figure 6.3.2.

Figure 6.3.2 also shows that even with λ = 1, the fingerprint stability is not
perfect. This is because some devices transmit an additional IE (for example a
Vendor Specific IE) on occasion, resulting in two different fingerprints for a
single device. However, even in this case random MACs used by this device can
still be mapped to the original MAC address if both fingerprints are associated
to the original MAC address at some point in time. An algorithm for associating
a random MAC to the original MAC will be discussed in Section 6.5.

One might argue that instead of an exact match of the fingerprint bits, a different
metric such as the (weighted) Hamming distance or Jaccard similarity coefficient
of the bits could be used. However, observe that these metrics are unsuitable for
stable bits: a stable bit will never change for a specific device. Hence, a change
in this bit indicates that a different device is observed, and therefore a different
fingerprint should be generated.



102 CHAPTER 6. MAC-LAYER TRACKING OF MOBILE DEVICES

6.4 Transmission frequency

For non-cooperative location tracking, it is desirable that the tracked device
transmits radio signals as often as possible. After all, a MS can only fingerprint
an observed device when this device is both in range and transmits information
that can be used for identification. A device that is moving and infrequently
transmits might be “missed” by a MS positioned at a certain location. Moreover,
devices might be unassociated and in sleep mode, rarely transmitting frames.

To further clarify the issue, consider the following example use case. In August
2015, we deployed a tracking system on the roads near Pukkelpop 2015, a popular
music festival located in Kiewit, Belgium, in order to measure traffic congestion.
Figure 6.4.1(a) shows the estimated travel time between two points on a road
segment near the festival site. The travel time was determined by measuring the
time difference between observations of identical mobile devices at the start and
end points. Since vehicles were required to drive slowly on this segment, we were
able to capture many mobile devices that were observed at both points, resulting
in an accurate estimation of the true travel time. Fluctuations between day and
night, and the increase in congestion at the start and end of the festival can be
observed.

Figure 6.4.1(b) however, shows the same setup for a segment with a similar dis-
tance between the two points, but where the MSs are located near a highway
entry and exit ramp. Here, cars were allowed to move faster. Since the trans-
mission frequency of mobile devices located inside the cars remains identical, the
probability of matching a device between the start and end points decreases, and
so does the accuracy of the travel time estimation.

A possible solution for tracking such rapidly moving devices could be to increase
the number of MSs on a road segment [176]. However, the cost of the location
tracking system would increase, and the benefit would still be marginal if the
device in question transmits its identifier infrequently.

6.4.1 Instigating transmissions

To solve the problem of infrequent transmissions by nearby devices, a tracking
system can actively try to instigate transmissions from devices in the vicinity.
Here, the MS can craft frames which exploit a certain protocol mechanism [176]
or vendor-specific vulnerability as we will see in Section 6.5. As an additional
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Figure 6.4.1: Travel time in seconds for a road segment (green line). The purple line shows
the travel time in optimal conditions as calculated by Google Maps. The blue graph in
the background shows the number of device matches that were involved in the travel time
calculation.

benefit, the instigated response might further reveal details about the targeted
device [36], which could serve as an implicit identifier. Thus, using this technique,
the MS can increase the number of observed devices, increase the number of
transmissions per device and generate more bits as input to a fingerprinting
algorithm at the cost of actively transmitting frames and becoming detectable.
Let us now determine which frames are allowed to be transmitted and received
by a device while in an unassociated state, by investigating the 802.11 standard.

The 802.11 standard defines 4 different states that can exist between a pair of
STAs. Here, each state defines a class of MAC layer frames that may be exchanged
by the transmitting and receiving STAs, as shown in Figure 6.4.2. From the MS’s
point of view, the most interesting frames to consider are Class 1 frames: these
frames do not require authentication or association to an AP in order to be
exchanged between peer STAs, and are almost always unencrypted10. A MS can
utilize this class of frames to either sniff traffic between unassociated STAs or to
inject arbitrary frames into the network.

It should be noted however, that for a device to be able to receive Class 1 frames,

10With the exception of Self-protected Action frames (used in mesh networks) and some
Management frames that are transmitted when the robust management frame service (802.11w)
is enabled.
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Figure 6.4.2: 802.11 non-mesh STA state transition diagram. Each state corresponds to
one or more classes of frames that may be exchanged between two STAs [127, p. 1012].

it must be tuned to the same channel as the transmitter11. A station will listen
on a channel for at least MinChannelTime. If the channel is idle, it will switch
to the next channel. Otherwise it will wait until MaxChannelTime [127, p. 107]
before switching to the next channel [60, 61, 87]. Thus, the MS could wait for the
tracked station to switch to its own channel or alternatively, transmit the Class
1 frame on multiple channels at the same time. In the latter case, monitoring
these channels is required as well in order to receive any responses to the stimulus
frame, e.g. by using multiple interfaces in monitor mode.

6.4.2 Beacon frames

Among Class 1 Management Frames [127, p. 1013], a first type that we can
utilize to increase the transmission probability of nearby devices is the Beacon
frame. Many popular retail stores, hotels, bars, network operators, universities,

11Since Wi-Fi channels overlap, it is sufficient to be tuned to an overlapping channel.
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etc. offer internet access to their visitors in the form of an (often open) wireless
network. Such networks can be identified with for example the SSIDs “attwifi”,
“tmobile”, and “eduroam”. On the other hand, the popularity of SSIDs such as
“linksys” and “dlink” can be attributed to the default vendor configuration of
certain home APs.

In a tracking system, we can configure the MSs to spoof said SSIDs by trans-
mitting crafted Beacon frames matching the SSID and Robust Secure Network
(RSN) configuration, i.e. the security parameters, of the target network. Sur-
rounding devices that automatically connect to known Wi-Fi networks and have
one or more of these spoofed SSIDs in their PNL, will be more inclined to transmit
frames because of automatic connection attempts [34, 62, 88, 176]. For example,
Probe Request frames will be transmitted by the device before connecting in
order to obtain the capabilities of the (fake) AP.

To increase the maximum number of SSIDs that can be spoofed and to conserve
computing power on the MS, one can choose to only spoof Beacon frames and
ignore Association Requests from surrounding devices. Further, the Beacon
Interval field value can be increased so that Beacons do not need to be trans-
mitted as frequently.

Similar to spoofing popular SSIDs, we can spoof Personally Identifying Wireless
Networks (PIWNs) as well [34, 62]. Instead of composing a list of popular SSIDs,
we can capture SSIDs from Probe Requests transmitted by a specific device
and propagate this information to the other MSs. Hence, the goal here is not
to trigger transmissions from as many surrounding devices as possible, but to
instigate transmissions from one particular device that is associated with this
rare SSID. An example of this approach is graphically shown in Figure 6.4.3.

Lastly, Vanhoef et al. have recently demonstrated that by including Hotspot
2.0 IEs in Beacon frames, Windows 10 and Linux clients will transmit Access
Network Query Protocol (ANQP) Requests using their original MAC address to
request more information about the AP [268]. We will discuss Hotspot 2.0 and
ANQP in detail in Section 6.4.4.

6.4.3 Control frames

The Request To Send (RTS), Clear To Send (CTS), and Acknowledgement (ACK)
Control Frames [127, p. 1012] form another type of Class 1 frames we can use
for instigating transmissions. The first two of these frames, RTS and CTS, are
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Figure 6.4.3: An example topology where data transmitted from the tracked station, such
as its MAC address and SSIDs are captured and propagated to other MSs. This information
can subsequently be used to spoof PIWNs and to transmit directed Null Data frames,
instigating more transmissions from the tracked station.

exchanged prior to data frames in order to distribute medium reservation infor-
mation. A STA receiving either one of these frames can extract the period of
time that the medium is to be reserved from the Duration field, and consequently
wait before transmitting in order to avoid collisions [127, p. 824]. As demon-
strated by Musa et al. [176], this mechanism can be exploited by transmitting
fake RTS frames containing the receiver’s MAC address as the TA field of the
RTS frame. The receiver will then respond with a CTS frame containing its own
MAC address, revealing its presence12.

ACK frames can be exploited in a comparable manner. According to the 802.11
standard, each data frame must be positively acknowledged13 with an ACK

12After publication of this work, a variant of this attack was discussed by Martin et al.
in [164]. They demonstrate that some devices will keep responding to RTS frames addressed
to its non-random MAC address even if MAC address randomization is enabled.
13Although technically, exceptions such as Block Ack frames, which can acknowledge multiple
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frame. Therefore, most Wi-Fi chipsets have implemented the ACK mechanism in
hardware as to ensure a timely acknowledgement of received frames. Now, con-
sider what happens if we transmit a data frame with both the RA and TA fields
set to the tracked device’s MAC address. In this case, the receiver’s hardware
will simply copy the TA field from the data frame (its own MAC) into the RA
field of the ACK frame, again revealing its presence.

A disadvantage of using these Control Frames for instigating transmissions is that
one is required to know the receiver’s MAC address. This might be problematic
if it is frequently randomized, since a STA should not respond to its original
MAC address after randomization. On the other hand, if the MAC address is
randomized infrequently or if the device still responds to its original MAC address,
this approach can be used to reliably instigate a response for every transmission.

6.4.4 Action frames

Action frames are a type of frame intended for extended management function-
alities [127, p. 449]. At the time we conducted this experiment, there were
20 non-reserved “categories” of Action frames, each offering a different service.
For example, Public (Category 4) Action frames are Class 1 frames intended for
inter-BSS, intra-BSS, AP to unassociated STA, and GAS communications [127,
p. 743].

As we saw earlier, a STA is allowed to transmit and receive Class 1 frames
even when it is not a member of any BSS, which makes these frames interesting
candidates for location trackers. The 802.11 standard states that in this case, the
“wildcard BSSID” should be used, which is equal to the broadcast MAC address
“ff:ff:ff:ff:ff:ff”. In the following sections, we will discuss Block Acks,
GAS, Spectrum and Radio Measurement frames, Tunneled Direct-Link Setup
(TDLS), and Wireless Network Management (WNM).

Block Acks

In Section 6.4.3, we have seen that every 802.11 frame must be positively acknowl-
edged on receipt. However, STAs with QoS support can choose to acknowledge
multiple frames at the same time via Block Acks, reducing overhead. When two
communicating STAs both support the Block Ack mechanism, the originator

frames at the same time or a “No Ack” policy can be enforced by the transmitting STA.
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STA can set up a Block Ack exchange by sending an Add Block Ack (ADDBA)
Request frame. The recipient STA must then accept or reject the request by
responding with an ADDBA Response frame. Then, the originator can transmit
multiple data frames followed by a Block Ack Request, which is acknowledged
according to the Block Ack policy [127, p. 904].

Unlike normal ACKs, Block Acks are not Control frames, but a category of
Action frames that was introduced in the 802.11e amendment [126]. An important
consequence is that both the transmitter and receiver MAC address fields are
present in the frame.

Generic Advertisement Service

In 2011, the IEEE introduced a set of Class 1 Public Action frames under the
802.11u “Interworking with External Networks” amendment. The Interwork-
ing amendment, as the name suggests, primarily focuses on enabling informa-
tion transfer between 802.11 devices and Subscription Service Provider Networks
(SSPNs). These are subscription based networks offered by a certain provider,
such as cellular networks. The amendment additionally defines a number of
new procedures for network discovery and selection, interaction with emergency
services, and a QoS mapping from the SSPN’s QoS settings to the 802.11 QoS
mechanism [127, p. 78]. In 802.11u, an interesting candidate for instigating
transmissions is GAS.

GAS allows a STA to discover network properties or services provided by a SSPN,
such as whether the network provides an internet uplink. Here, the SSPN is
the entity that validates the user’s credentials and offers its services to the user
through the AP. GAS can also be used to discover the services offered by a peer
STA, e.g. Wi-Fi Direct or P2P Groups [42].

A STA can discover available services by embedding a GAS Initial Request
inside an 802.11 Public Action frame and transmitting it to the peer STA or
AP. Since GAS queries may be transmitted before association, they allow the
mobile device to select the most suitable P2P Group or AP before connecting.
A unique byte value called the “Dialog Token” is used for matching requests
with their corresponding responses in case several GAS requests are transmitted
concurrently.

For querying information from the peer STA (e.g. in case of an AP: whether the
network provides internet access), different advertisement protocols can be used.
The default and mandatory supported advertisement protocol is ANQP. Upon
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receiving a GAS Initial Request, the peer STA replies with a GAS Initial
Response. If the response is too large to fit in one frame, the remainder of the
response is queried and delivered with respectively GAS Comeback Requests and
GAS Comeback Responses.

With the objective of instigating transmissions in mind, GAS has a few interesting
properties. First, a device that has Interworking enabled must support GAS, and
GAS queries can be performed peer-to-peer in the unassociated state. Second,
ANQP must be supported as the default advertisement protocol per standard
definition [127, p. 1145]. ANQP queries can however contain different elements,
each with a different purpose. As an example, the “Capability List” element
contains the capabilities supported by a STA.

With this knowledge, MSs can create their own ANQP requests, embed them in a
GAS Public Action frame, and broadcast these frames in order to obtain a GAS
Response for each device in the vicinity that supports GAS. Since the frame can
be broadcast and transmitted in the unassociated state, this technique has the
potential to instigate transmissions on demand if the targeted device supports
GAS.

Spectrum and Radio Measurement

Spectrum and Radio Measurement frames, defined in the 802.11k amendment,
can be exchanged between a pair of STAs to determine the channel load, the
received signal power, noise histograms, etc. The type of measurement to per-
form is determined by the Measurement Type field of the Measurement Request
frame.

According to the 802.11 standard, support for the Basic Request is mandatory
and a STA in a BSS should only generate a Basic Report in response to a Basic
Request if the request is received from the AP with which it is associated [127,
p. 1048].

Tunneled Direct-Link Setup

A TDLS link can be set up between two peer STAs when they wish to use a
feature that is not supported by the BSS itself, e.g. a certain high throughput
data rate. Frames transmitted in this fashion are said to be transmitted over the
TDLS direct link.



110 CHAPTER 6. MAC-LAYER TRACKING OF MOBILE DEVICES

Support for the TDLS protocol can be determined by inquiring the STA with a
TDLS Discovery Request. If the targeted peer STA supports TDLS and if the
BSSID is correctly set, it must respond with a TDLS Discovery Response.

Wireless Network Management

Another service introduced in 802.11e is WNM. This service is used for assorted
management tasks such as requesting diagnostics from a STA, announcing that
a STA will enter sleep mode, requesting channel usage information, etc. Two
interesting candidates for instigating transmissions are the Event Request and
Timing Measurement Request frames.

The former type can be used to request another STA to report one or more
events, such as the Peer-to-Peer Link event [127, p. 777]. The latter type is
used to synchronize a local clock time between two STAs [127, p. 1131], which
could potentially serve as a useful implicit identifier in the context of tracking.

Wi-Fi Direct

A specification for facilitating peer-to-peer communication between two non-AP
STAs, named “Wi-Fi Direct”, was released to the public by the Wi-Fi Alliance
in 2010 [279]. Instead of connecting to a real AP, a STA can take on the role of
AP and form a Peer-To-Peer (P2P) Group. Other STAs can discover these P2P
Groups using passive (Beacons) or active (Probe Requests) scanning mecha-
nisms [42]. Since the user of a device explicitly needs to cooperate in order to
configure the device to scan for P2P groups14, we will not consider Wi-Fi Direct
further.

6.4.5 Stimulus frame candidates

Of all stimulus frame types discussed above, GAS Requests seem the most promis-
ing for instigating transmissions, since unassociated peer STA to peer STA com-
munication is explicitly allowed by the standard for this frame type. This is
not the case for all frames we discussed, though it would be interesting to see

14In Android 6.0.1 for example, the user must go to the “Wi-Fi Direct” menu under the
“Advanced Wi-Fi” settings to scan for P2P Groups.
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how a device or chipset reacts when it receives these frames from an unassoci-
ated STA such as a MS. For example, Measurement frames, TDLS frames, and
WNM frames can normally only be transmitted peer-to-peer when both STAs are
associated to the same BSS. In Section 6.5.3, we will determine whether these
constraints are respected by the device vendor’s implementation, and under which
conditions the discussed frames are accepted by the receiving STA. Furthermore,
we will compare these frames in terms of their ability to increase the transmission
frequency of nearby devices.

6.5 Evaluation

In order to quantify the effectiveness of our IE based fingerprinting technique and
of our techniques for instigating extra transmissions from nearby devices, we have
performed several experiments. We shall henceforth refer to these experiments as
respectively the fingerprinting and transmission rate experiments. The used code
and anonymized data sets have been made available publicly at https://github.
com/rpp0/wifi-mac-tracking, CRAWDAD.org [142], and Wicability.net [217].

6.5.1 Attacker model

We first define the following goals that an attacker attempts to accomplish. In
the fingerprinting experiment, the attacker’s goal is to uniquely identify as many
devices as possible without relying on explicit identifiers. In the transmit rate
experiment, the attacker attempts to instigate as many transmissions as possible
from nearby devices. We make the following assumptions about the attacker and
observed devices:

• At least one MS with an interface configured in monitor mode is used to
track devices. To determine a trajectory, at least two MSs are required.

• Observed devices may or may not be associated to an AP. The attacker
cannot determine whether this is the case.

• The attacker has a minimum amount of information at their disposal: we
assume that in the best case (for the attacker), only a single Probe Request
frame is observed by the MS per device. Additionally, explicit identifiers
such as the MAC address may be randomized for every transmitted frame.

https://github.com/rpp0/wifi-mac-tracking
https://github.com/rpp0/wifi-mac-tracking
CRAWDAD.org
Wicability.net
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• Devices may appear or disappear from the tracking system’s set of cur-
rently observed devices at arbitrary times. Consequently, techniques such
as correlating the frame sequence numbers (Section 6.3.2) or scrambler seed
(Section 6.3.1) cannot be used, since these values may have diverged or reset
by the next time a device is observed.

Note that the above constraints are typical in non-cooperative tracking scenarios,
such as tracking the visitors at an event or tracking (smartphones located in)
vehicles on the road.

6.5.2 Fingerprinting experiments

For evaluating our fingerprinting technique (Section 6.3.3), we have set up a
low-cost tracking system consisting of 8 commodity hardware MSs in a remote
positioning topology (see Figure 6.2.1 on page 89). For the MS, we have used
MikroTik 5RB912UAG-2HPnD devices equipped with an AR9342 chipset (see
Figure 6.5.5 on page 130), though any device that supports monitor mode could
be used for the same purpose. The stock firmware of the devices was replaced with
OpenWRT Chaos Calmer15. Frames were captured using a custom application
with libpcap, and one interface in monitor mode.

The system was deployed at the Glimps 2015 music festival in Ghent, Belgium,
which took place from 10 to 12 December 2015. The MSs were placed at the loca-
tions shown in Figure 6.5.1 on page 127. Here, each MS was configured to forward
one Probe Request frame per unique device to a central server over a secure link.
Recall that we designed our fingerprinting technique with the constraint of hav-
ing only one Probe Request at our disposal in mind. In total, 51,975 Probe
Requests were analyzed. In compliance with ethical research guidelines, no data
frames were captured at the festival in order to ensure the privacy of the visitors.

Fingerprint uniqueness

The effectiveness of our fingerprinting approach from Section 6.3.3 was evaluated
by measuring the ratio of the number of unique fingerprints over the number
of unique devices (MAC addresses). Ideally, there should be one fingerprint
15OpenWRT is a free Linux distribution for embedded devices, and can be downloaded at

https://openwrt.org/.

https://openwrt.org/
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per device. Each fingerprint is solely based on the bits from a single Probe
Request. Only non-random MACs (28,048 out of 83,055 MACs) were considered,
so that the MAC address can be used as a baseline to compare the performance
of the fingerprinting algorithm. Furthermore, incorporating random MACs in
the analysis would overestimate the observed number of unique devices.

Figure 6.5.2(a) on page 128 plots the overall fingerprint uniqueness for several test
set sizes of non-random MACs for λ = 0, so that the variability is maximized and
the stability is minimized. Figure 6.5.2(b) shows the same experiment, but with
λ = 1 so that the variability is minimized and the stability is maximized. Recall
from our discussion in Section 6.3.3 that the variability represents the unique-
ness of the fingerprint, and that the stability gives an indication of how likely a
fingerprint will remain identical for a given device. It should be mentioned that
these results still underestimate the fingerprint uniqueness for two reasons. First,
a non-standard compliant implementation may use MAC address randomization,
but not set the locally administered bit [268]. As a result, the same device will
incorrectly be interpreted as a set of different devices with the same fingerprint,
hence underestimating the uniqueness of this fingerprint. Second, although un-
likely in practice, Probe Requests could be spoofed by an adversary in order to
disrupt a tracking system.

From the results shown in Figure 6.5.2, we conclude that for a MS that has
observed a small dataset of 50 to 100 devices, the uniqueness of our fingerprint
ranges from at least 80.0 to 67.6 percent. If the test set size is increased further,
more devices with similar IEs will be encountered eventually, and the unique-
ness of the fingerprint will therefore decrease. For large datasets of 1,000 to
10,000 devices, the uniqueness of the fingerprint drops between at least 33.0 to
15.1 percent. These results are encouraging, because a single MS will typically
only observe a small set of devices, and the uniqueness for such small sets is high.

Deanonymization

Since the goal of the tracking system is to deanonymize devices, i.e. to link
random MACs to a single fingerprint, having a large number of overlapping fin-
gerprints is unfavorable.

To overcome this issue, note that we can utilize the fingerprinting algorithm in
conjunction with temporal information. After all, the number of devices observed
by a MS over a certain period of time is likely to be much smaller than the
complete set of observed devices. Furthermore, when a device exposes its non-
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random MAC address at some point in time, random MAC addresses with the
same fingerprint near that time are more likely to be associated to that device.
The deanonymization of random MAC addresses can thus be performed on a
subset of devices instead of the complete set. As shown in Figure 6.5.2, decreasing
the test set size (or time interval) indeed increases the relative uniqueness of
fingerprints, since the probability of observing devices with similar IEs decreases.

Multiple approaches can be considered for determining the subset size. In a naive
approach, one could bin devices according to a specified time interval, but then
the question remains of how to choose the bin size and how to handle devices
that are observed at the boundary of a bin. Alternatively, the fingerprint of the
random MAC can be mapped to the MAC that was closest in time and has an
identical fingerprint for the highest probability of a correct match. In Figure 6.5.3
(page 128) for example, the random MACs r1 – r5 with fingerprint f1 are mapped
to their corresponding non-random MACs m1 – m3. The algorithm pseudocode
is shown in Figure 6.5.4.

When using the above algorithm to map a random MAC to its closest non-random
MAC, we discovered that a matching fingerprint can be found with 99% proba-
bility. However, it should be noted that these mappings cannot be guaranteed
to be correct as opposed to our experiments where only non-random MACs were
considered. That is, the information required to validate the accuracy of the map-
ping (i.e. the true MAC address of the device) is not available in an uncontrolled
environment, which is an inherent problem in non-cooperative deanonymization.
One solution to overcome this problem could be to install an application on each
mobile device partaking in the experiment. This application can provide the
true MAC address to the fingerprinter for each random MAC, so that the accu-
racy of the deanonymization can be determined. A large dataset containing this
information would be an interesting contribution for future work.

6.5.3 Transmission rate experiments

To correctly evaluate the transmission rate increasing techniques (Section 6.4.1),
a number of complications had to be addressed. A first complication is that
in order to measure the transmission frequency of a device, the device must
remain in range of a MS an equal (preferably large) amount of time for each
tested technique. This is rarely the case in a field setup (e.g. a music festival
or shopping center), since here, devices are able to roam freely and are typically
observed only a few times by a single MS. Secondly, the set of tested devices must
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Table 6.5.1: Number of devices per vendor OUI as observed during our evaluation experi-
ments. A combined total of 138 unique devices were observed during the two experiments.

Vendor # of devices
Intel 40
Apple 21
Samsung 13
Lenovo / Motorola 11
OnePlus 11
LG 7
Hon Hai 6
Nokia / Microsoft 5
Murata 4
Compal 2
HTC 2
Cisco 2
TP-Link 2
Axis Communications 2
Other 10

be diverse and sufficiently large in order to be representative.

For these reasons, we have chosen to perform the evaluation of the transmission
rate increasing techniques at our research lab. Here, devices are more likely to
remain in range of the MS for extended durations compared to a field setup. At
the same time, there is a healthy model and vendor diversity between devices
owned by the researchers (see Table 6.5.1).

We have performed two experiments. The goal of the first experiment is to
determine under which conditions a device will respond to a stimulus frame.
Our second experiment shows how these methodologies compare against each
other and against traditional approaches such as Beacon spoofing in terms of
transmission frequency. Only non-random MACs were considered in order to
prevent multiple observations of the same device.
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Response conditions

For each of the frames discussed in Section 6.4.4, we have determined under which
conditions and for which STAs they can be used to instigate transmissions. We
define four test cases in decreasing order of knowledge required by the MS:

1. Known BSSID: The targeted STA responds to a broadcast stimulus frame
only if the BSSID (addr3) and Transmitter Address (addr2) fields are cor-
rectly set to the associated AP. In other words, no frames from unassociated
STAs are accepted. This requires the most knowledge by the MS, since the
MS must encounter the target while it is associated to an AP, and this AP’s
BSSID must be spoofed.

2. Unicast: The targeted STA responds to the stimulus frame only if ad-
dressed directly. Here, the MS would only need to have knowledge of the
target’s current MAC address. The BSSID is set to “ff:ff:ff:ff:ff:ff”
(the wildcard BSSID).

3. Broadcast BSSID: The targeted STA responds to the broadcast stimulus
frame when the BSSID field is set to “ff:ff:ff:ff:ff:ff”. This allows
the MS to probe all devices in range.

4. Zero BSSID: The targeted STA responds to the broadcast stimulus frame
when the BSSID field is set to “00:00:00:00:00:00”. This non-standard
behavior might indicate a misinterpretation of the standard or an imple-
mentation bug where the BSSID field is not properly validated.

This experiment was performed as follows: first, we used a TP-Link TL-WN722N
dongle (Atheros AR9271 chipset) in monitor mode (see Figure 6.5.5) to scan for
in-range BSSIDs and STAs. For this purpose we have created a Python script
that uses the “Scapy” packet manipulation library. The code of this script is
published on Github16.

After the initial scan, the script continuously transmits each type of stimulus
packet for 60 seconds for each of the four test cases. Between each test, the
experiment was paused for 10 seconds to prevent slow processing of packets from
influencing the next test. The experiment was run for a total period of 17,038
seconds, observing 136 unique STAs and 27 BSSIDs. The packet trace of this
experiment containing each of the stimulus frames and their responses can be
found at Online Resource 1 [214]. There were no other devices transmitting these
16https://github.com/rpp0/wifi-mac-tracking

https://github.com/rpp0/wifi-mac-tracking


6.5. EVALUATION 117

Table 6.5.2: Overview of the number of unique STAs out of 136 that responded to a
stimulus frame type (rows), for the 4 test cases that we defined in Section 6.5.3 (columns).
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ADDBA Request 27 7 4 3
GAS Request 4 6 7 6
Basic Measurement Request 9 1 0 0
CCA Request 11 1 0 0
Channel Load Request 7 2 2 2
STA Statistics Request 8 2 2 2
Frame Request 8 2 2 2
Link Measurement 8 2 2 2
WNM Event Request 2 2 2 2
WNM Timing Measurement Req. 2 2 2 2
TDLS Discovery 0 0 0 0
TDLS Setup 0 0 0 0

requests at the time of the tests. The number of devices that sent a response for
the stimulus frame per experiment is shown in Table 6.5.2. These results will be
discussed in the following sections.

ADDBA Request

For the ADDBA Request frame (Section 6.4.4) test, we have determined that 27
out of 136 devices responded during the known BSSID test, 7 devices replied to
unicast frames, 4 devices responded to a broadcast BSSID ADDBA Request, and
3 devices replied in the zero BSSID test.

Among the devices that responded to broadcast and zero BSSID frames were 3
Intel chipsets returning an ADDBA Response with error code 37 (request declined),
and 2 Axis Communications chipsets responding with a Block Ack Error frame
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(category 131). These devices thus leak their current MAC address to the MS in
response to a broadcast ADDBA frame.

GAS Request

In the GAS Request frame (Section 6.4.4) experiment we continuously transmit-
ted ANQP queries containing the “Vendor Specific” element. We have chosen
this element specifically because it is the only element supported in peer-to-
peer mode by the most popular supplicant for Android and Linux devices, wpa_
supplicant [14].

We have observed that 4 devices responded in the known BSSID case, 6 devices
replied to unicast frames, 7 devices responded in the broadcast BSSID case and 6
devices in the zero BSSID case. Unlike what we have seen for ADDBA Requests,
there is no significant difference in the number of observed devices between the
known BSSID and broadcast BSSID tests. This means that if GAS is supported
by a device, the device is likely to respond to broadcast peer-to-peer frames.

Support for GAS by a device could be determined in two ways. A first is to look
at the Interworking IE transmitted by a device in Probe Requests. However, we
observed that not all devices that transmit the Interworking IE respond to GAS
Requests, and not all devices that respond to GAS Requests transmit the Inter-
working IE. Therefore, the presence of the Interworking IE in Probe Requests
is not a useful metric to determine how many devices support peer-to-peer GAS
Requests.

A better approach is to look at “Passpoint” certification instead. Devices that
support 802.11u are often marketed using the terms “Passpoint” and “Hotspot
2.0”. Here, Passpoint is the label that a device obtains when it passes the cer-
tification program by the Wi-Fi Alliance, and Hotspot 2.0 is the name of the
technical specification that was developed by the Wi-Fi Alliance based on the
802.11u amendment [275].

A full list of 938 Passpoint certified devices can be found via the Wi-Fi Alliance
Product Finder tool [276]. It should be noted that this list is merely a lower
bound for vulnerable devices. For example, among the devices that responded,
we observed two Axis Communications devices that are not Passpoint certified.
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Spectrum Management Request

In context of Spectrum Management (Section 6.4.4), we have tested Basic Re-
quests and Clear Channel Assessment (CCA) Requests.

For Basic Requests, no devices responded during the broadcast BSSID and zero
BSSID test cases. During the known BSSID testcase however, a response was
received for 9 devices from various vendors. Only a single Intel chipset responded
with a Spectrum Management Error frame during the unicast test. The results
for CCA Requests were identical, except 11 devices were observed during the
known BSSID test.

Given these results, we conclude that although Measurements Reports can be
instigated if supported by the device, the BSSID must be known to the MS, and
the STA must be associated.

Radio Measurement Request

For Radio Measurement (Section 6.4.4), we have tested Channel Load, STA Sta-
tistics, Frame and Link Measurement Requests. For each of these frames, two
Axis Communications chipsets responded with error frames during the broadcast
BSSID, zero BSSID, and unicast test cases. During the BSSID test cases, we
observed responses from 7 devices for the Channel Load experiment, and 8 de-
vices for the other experiments. Interestingly, the responses all originated from
Motorola and OnePlus smartphones, which suggests that Radio Measurement is
only supported by these devices.

WNM and TDLS

For WNM related frames, we were only able to instigate error responses from
the two Axis Communications chipsets. Other devices did not respond in any of
the test cases. No devices responded to TDLS frames. A possible explanation is
that these protocols are rarely supported17. We decided to mention these results
nevertheless, since they could be of value to future work.

17In Wireshark, the de facto standard tool for packet inspection, WNM Event Request IE
parsing is not fully supported, as can be observed from the provided traces.
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Table 6.5.3: An overview of the advantages of each technique
discussed in Section 6.4.
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Response contains current MAC l l l l
Response contains implicit identifiers l
Immediate reply from device w∗ l l l

Can be broadcast l l w†

Requires no knowledge about device l l
Commonly supported l l l

∗ With an implementation dependent delay (see [88]) and only
if at least one SSID in the device’s PNL is guessed.
† Implementation dependent.

Discussion and comparison

Based on our experimental results, we hypothesize that GAS Request frames will
be the most effective to instigate transmissions in practice. These frames can be
broadcast per standard definition and will trigger responses regardless of whether
the targeted STAs are associated to an AP. However, the GAS protocol must be
supported by the receiving device. A second interesting type are the ADDBA
frames, since some Intel chipsets similarly respond to broadcast frames. This
behavior can additionally be used as an implicit identifier. In Table 6.5.3, we
compare the techniques using these frames to previous approaches.

For the comparison experiment, our setup consists of a single MS that forwards
all captured frames to a central server. The MS hardware is identical to the
hardware used in Section 6.5.2, i.e. a MikroTik RB912UAG-2HPnD equipped
with an AR9342 chipset (see Figure 6.5.5 on page 130).

To compare the effectiveness of the techniques from Section 6.4 in a realistic
tracking scenario, we have measured the number of Class 1 frames that the MS
received over a total period of 8 hours. Only devices with non-random MACs
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that sent more than 100 frames (32 devices) were considered. The tests for each
technique were interleaved in order to mitigate the effects of changing channel
conditions. As such, the tests were performed intermittently for a period of 5
minutes each.

Besides novel techniques, we have tested the techniques used in previous works,
i.e. Beacon spoofing (Section 6.4.2) and directed Null Data frames (Section 6.4.3).
Recall that we assume the MS has no knowledge about nearby devices, analogous
to the “broadcast BSSID” test case from Section 6.5.3. For the Null Data tech-
nique however, we had to relax this assumption and allow unicast, since responses
cannot be observed otherwise. For the Beacon technique, our MS spoofed several
local and popular networks, such as “linksys”, “TELENETHOMESPOT”, and
“Proximus_FON”.

The effectiveness of each technique was determined by comparing the number
of received Class 1 frames from the device against the control test, where no
special techniques were used. Table 6.5.4 shows the average number of frames
received by the MS during the control test and technique tests. For each test,
the standard deviation is high because the STA transmit behavior highly differs
between implementations. We can also see that on average, only the Beacon
spoofing technique performs worse than the control test. This can be attributed
to a number of reasons: the tracked device must have one of the spoofed SSIDs
in its PNL18, the resulting Probe Request’s transmission is not immediate, the
Beacons themselves cause more channel contention, and some devices stop prob-
ing after association [88].

Figure 6.5.6 graphically shows for each technique, the percentage of the 32 ob-
served devices in function of the percentage of improvement compared to the
control test. A log scale was chosen since some devices responded to each stimu-
lus frame, vastly increasing their transmission frequency. In general, GAS frames
appear to be the most favorable: unlike Null Data frames, GAS frames can be
broadcast, appear to be supported by the most devices and also instigated the
most transmissions. ADDBA frames were slightly less effective, since not all
implementations respond to this type of frame. Null Data frames performed
similarly, but require knowledge of the tracked device’s MAC address. Finally,
Beacons are the least favorable technique, which can be attributed to the fact
that only 3 devices in our lab responded to the spoofed SSIDs. However, a Probe
Request contains more implicitly identifying information (e.g. IEs) than other
responses.
18Therefore, the choice of which SSIDs to spoof in a tracking system impacts performance
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Table 6.5.4: Comparison between the average number of frames received by the MS during
the control test and the technique tests for 32 unique devices. The average number of
frames received highly varies between devices, but is greater than the control test for each
technique except the Beacon technique.

Average Standard deviation
Control test 155.8 224.7
Common Beacons 148.2 219.4
Null Data 956.3 4529.8
ADDBA 168.9 233.5
GAS 13219.2 48693.7

6.5.4 Practical location tracking

Now that we have detailed and evaluated several techniques for fingerprinting a
device and instigating transmissions from it, the question remains of how to apply
these techniques in practice. The fingerprinting approach from Section 6.3.3 can
be used to create a unique identifier for devices observed by the MSs, based on a
single Probe Request. Temporal information can then be used to link random
MACs with their corresponding non-random MAC (see Section 6.5.2).

If the transmission frequency of tracked devices is low or if the tracked devices
are moving fast19, the techniques that we discussed in Section 6.4.1 can be used.
ADDBA frames and GAS Requests are the most effective for instigating transmis-
sions, but their responses do not contain as much uniquely identifying information
as Probe Requests. Therefore, these techniques will work best for non-random
MACs. On the other hand, spoofed Beacon frames can instigate Probe Requests
and are therefore useful for both non-random and random MACs, but this ap-
proach does not increase the transmission frequency significantly.

significantly.
19Note that when a device is moving fast, we can only use broadcast (or unicast if the target

MAC is non-random and known), since roaming devices are rarely associated to one particular
APs for an extended duration. Id est, we cannot exploit the “Known BSSID” assumption in
this case.
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6.6 Countermeasures

To prevent MAC-layer based tracking systems from tracking a user’s device with-
out their knowledge through the techniques discussed in this work, several coun-
termeasures can be put in place by vendors of mobile devices. We will now
briefly discuss these countermeasures. Ideally, they should be combined instead
of considered separately.

• Enable MAC address randomization: Since the MAC address is a
globally unique identifier, it must always be completely randomized for ev-
ery transmitted frame when actively scanning for APs. In order to not
break roaming functionality, the real MAC address can still be used when
associating to an AP, on the condition that the device’s PNL does not
contain SSIDs that can be guessed by an attacker (see Section 6.4.2). De-
vices that use wpa_supplicant can enable this countermeasure through the
options mac_addr, rand_addr_lifetime, and preassoc_mac_addr.

• Reduce Probe Request frequency: Since Probe Request timing infor-
mation can be used as an implicit identifier [63], these frames should be
transmitted infrequently and at random intervals.

• Avoid directed Probe Requests: Probe Request frames ideally must
only contain an SSID Parameter Set IE with the broadcast or empty (null)
SSID in order to prevent leakage of the device’s PNL or connection history.
Alternatively, the device can choose to only scan for networks passively [34,
63, 87].

• Defer transmission of IEs: Instead of transmitting all IEs for every
Probe Request, the device should only share this information with an AP
in the association stage, since Probe Requests contain identifying infor-
mation [268]. This limits the tracker’s opportunities to instances where the
user manually connects or where an SSID from the PNL is known.

• Ignore broadcast Class 1 frames: Peer-to-peer Class 1 frames trans-
mitted to ff:ff:ff:ff:ff:ff should be ignored. A receiver should only
respond to such a request if the frame is directly addressed to its current
MAC address.

• Randomize Sequence Numbers: The Sequence Number field in the MAC
header should be randomized while the STA is unassociated in order to
prevent deanonymization [112, 268].
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• Validate state machines: A STA should only interpret a frame when it is
received in the correct state. For example, an ADDBA Request frame should
not be accepted from unassociated STAs, as this would imply a transfer of
data frames.

• Trusted locations: The user should be allowed to select trusted geograph-
ical locations where the Wi-Fi chip is exclusively enabled, in order minimize
the risk of being tracked [34].

6.7 Related work

In previous work, various non-cooperative 802.11 MAC layer based tracking al-
gorithms and topologies have been proposed. Abott et al. have implemented
a non-cooperative tracking system to estimate travel durations for vehicles on
the road by solely monitoring MAC addresses [5]. Bonné et al. have created
a similar tracking system for tracking movement patterns of event visitors [33].
Musa et al. have implemented a tracking system for vehicles using a probabilistic
approach [176].

For fingerprinting devices on the MAC layer, an approach where a combination
of transmitted network data, SSIDs, specific MAC header fields and transmis-
sion rates is used was discussed by Pang et al. However, in this work MAC
header fields on their own were not yet considered practical to distinguish users
uniquely [191]. Neumann et al. have used several parameters from the Radio-
tap header to learn a fingerprint for a device [178]. Cunche et al. utilized the
rarity and frequency of SSIDs to fingerprint and link devices [63]. The works
by Bonné and Chernyshev et al. [34, 52] use SSIDs to map observed devices to
a set of visited geolocations using databases such as WiGLE.net [280]. Vanhoef
et. al apply clustering techniques to a selection of IEs and to sequence numbers
in order to identify a device. They also study the variability and stability of
IEs using information entropy, but only consider the entropy of IE fields in their
entirety and do not identify precisely which bits are responsible for leaking infor-
mation as opposed to this study. Furthermore, in their work it is assumed that
the adversary can acquire multiple transmissions from tracked devices in order
to identify them [268]. Other works made use of timing differences in Probe
Requests [62, 76, 87, 168].

One of the first works that aims to improve MAC layer fingerprinting by elicit-
ing more transmissions from devices was published by Bratus et al. [36]. Here,
the reaction of a STA to stimulus Deauthentication frames, Beacons, Probe
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Responses, and failed authentications was observed and used to fingerprint the
device. However, it is assumed that the STA is associated to an AP or joining a
BSS. The work presented by Musa et al. [176] deserves a special mention because
it demonstrates a number of preliminary techniques to instigate transmissions
in context of non-cooperative tracking on the MAC layer. They have spoofed
Beacon frame SSIDs to increase the frequency of Probe Requests from unas-
sociated devices, and additionally used injected RTS frames for eliciting CTS
frame responses. Similarly, introducing a known or common SSID to increase
the transmission frequency of nearby unassociated devices is mentioned in the
studies performed by Cunche et al. [62] and Bonné et al. [34]. An overview of all
relevant works and their features is given in Table 6.7.1.

6.8 Chapter conclusions

Despite efforts by vendors for implementing MAC address randomization, we
have shown how a device can nevertheless be fingerprinted and deanonymized,
even if the device is not cooperating or not associated to an AP. In our approach
we have discussed how a tracking system can combine implicitly identifying IE
bits from a single Probe Request frame to form a fingerprint that is at least 80.0
to 67.6 percent unique for small sets of 50 to 100 devices, and at least 33.0 to
15.1 percent unique for large sets of 1,000 to 10,000 devices. We have evaluated
these results using two datasets. The first dataset was recorded at Glimps 2015
and the second at our research lab, containing respectively 28,048 and 138 unique
devices. Additionally, we have discussed and compared our work against previous
works that aim to achieve similar goals. An overview of these works was given in
Table 6.7.1.

Further, we have shown how these fingerprints can be combined with temporal
information and how extra frames can be instigated by a tracking system when a
device sends frames infrequently or not at all. We have demonstrated how a MS
can exploit protocol design flaws and implementation vulnerabilities to achieve
this goal, given that nearby devices support the respective protocols. More specif-
ically, we have studied a wide array of Class 1 frames, such as Beacon, RTS/CTS,
Null Data, GAS Request, ADDBA Request and other Action frames. Such frames
can be actively injected by a MS to expose the presence of nearby devices more
frequently and reveal more implicitly identifying information on both the PHY
and MAC layers to the tracking system. We have experimentally determined
that GAS frames are particularly interesting in this regard, as these frames can
be broadcast and used to instigate transmissions on demand from Hotspot 2.0
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and Passpoint compatible devices while unassociated. Compared to the control
test, we measured a transmission rate improvement of 50 to 10,000 percent for 3
to 9 out of 32 devices (9.37 to 28.1 percent). ADDBA frames can be exploited in
a similar fashion in some implementations.

As the diversity between devices increases in terms of capabilities and supported
protocols, measures must be taken by vendors in order to prevent this kind of
unsolicited location tracking by third parties. Fortunately, some of the defences
suggested in this work and in related works have now indeed been incorporated
into the Wi-Fi standard: in 2018, the IEEE released the 802.11aq amendment,
which mentions randomization of the MAC address during scanning, resetting the
sequence number and reseeding the OFDM scrambler seed after a MAC change,
and refraining from sending Probe Requests that contain the SSID [128, p.
57–58]. Vendors of mobile devices have also started implementing these privacy-
focused features in practice. For example, since Android 10, MAC randomization
is enabled by default, even when connecting to an AP [107].
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Figure 6.5.1: Distribution of MSs for the performed fingerprinting experiments.
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Figure 6.5.2: The variability (solid line) of fingerprints for non-random MACs decreases
due to collisions as the test set size increases. The fingerprint stability (dashed line) also
slightly decreases due to some bits not being considered as unstable during training (e.g.
when the training set is small). Results shown for a training set of 1,000 MACs.

Fingerprint MAC Timestamp
m1 t0
r1 t0 + 1
r2 t0 + 2

f1 r3 t0 + 4
m2 t0 + 5
m3 t0 + 6
r4 t0 + 7
r5 t0 + 8

f2 r6 t1
m4 t1 + 1

Figure 6.5.3: An example that shows how the fingerprints f1 and f2 can be used in
conjunction with temporal information in order to link the random MAC addresses r1 – r6
to the non-random MAC addresses m1 – m3.
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1: procedure Deanonymize(frame)
2: t← frame.timestamp
3: m← frame.addr2 ▷ Transmitter MAC
4: f ← fp(frame) ▷ Get fingerprint bitstream(s)
5: if is_random_mac(m) then
6: for i in range (0, len(all_frames)) do
7: ti ← framei.timestamp
8: mi ← framei.addr2
9: fi ← fp(framei)

10: if fi = f then
11: di ← abs(t− ti)
12: end if
13: end for
14: return mi where di is minimal
15: end if
16: return m
17: end procedure

Figure 6.5.4: Procedure for deanonymizing random MAC addresses
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Figure 6.5.5: Top view of the hardware that was used for the MSs in our experiments.
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7.1 Introduction

In the introduction of this thesis, we briefly mentioned the increased interest
of the industry in the automation or optimization of business processes through
the use of IoT devices in an LPWAN. Such devices can for instance be used
in context of smart metering, location tracking, WSNs, smart transportation
systems and health monitoring [124]. In LPWAN networks, several low-power
embedded devices are typically deployed in areas of interest, and perform M2M
communication or interact with services on the internet in order to complete a
certain computing task. For example, an internet-connected embedded device
may be distributed to individuals suffering from a cardiovascular disease, so that
their condition can be monitored in real time by doctors.

The heightened attention for these use cases sparked the creation of several
PHY-layer modulation protocols that are optimized for LPWANs, i.e. for low
power consumption and long range communications. Examples of these proto-
cols are LoRa [156], Sigfox [241], Wi-Fi HaLow [278], LTE-M [2], and Weight-
less [274]. Out of those, LoRa is a proprietary, low-power, and long-range mod-
ulation scheme developed by Cycleo and acquired by Semtech in 2012 [234]. It
is currently among the more popular protocols, with numerous gateways already
deployed on a global scale [259].

Due to its proprietary nature, specialized hardware is required in order to trans-
mit or receive LoRa messages. Examples of such hardware are the SX1272
transceiver developed by Semtech [235] and the RN2483 transceiver developed
by Microchip [172]. Both transceivers expose a serial interface to the user. The
serial interface can only be used to make high level configuration changes to
the LoRa modem, and to transmit or receive payloads using LoRa modulation.
Hence, the entire PHY layer of these transceivers is abstracted in hardware, and
therefore cannot be accessed or modified.

Having access to the PHY layer of a wireless protocol is a desirable feature with
many interesting use cases for research and development. For example, recent
works have demonstrated the possibility to fingerprint individual transceivers
using only PHY-layer properties of the signal [71, 219, 271]. This could be useful
for tracking devices or intrusion detection. Another use case could be to perform
software simulations of the PHY layer, e.g. to determine the effect of various
channel conditions without requiring multiple physical deployments of hardware
transceivers [24, 171]. As a final example, enabling modifications to the PHY layer
allows for rapid prototyping of improvements in terms of security, performance



7.2. LORA PHY LAYER 137

or reliability [27, 247].

In this chapter, we provide several contributions that aim to bring the advan-
tages of PHY-layer access to the LoRa modulation scheme. First, we provide
a detailed description of the LoRa PHY layer. This description includes newly
added and undocumented features of the LoRa specification that were reverse
engineered from hardware LoRa transceivers. To the best of our knowledge, we
are the first to provide a complete and validated overview (C6). Second, we
present our algorithms for the detection, synchronization, and decoding of raw
PHY-layer LoRa frames using SDRs. These algorithms include a novel decoding
approach and a novel clock drift correction approach for LoRa, both implemented
in a complete and open-source software LoRa decoder using the GNU Radio
framework (C7). Our decoder is capable of decoding multiple channels simulta-
neously in real time regardless of the frame’s network identifier, similar to the
capabilities of “monitoring mode” devices in context of 802.11 (Wi-Fi). Finally,
we evaluate our decoder in a lab setup, and show that it can interoperate with
hardware LoRa transceivers, using only inexpensive Commercial Off-The-Shelf
(COTS) SDRs such as the RTL-SDR. In Chapter 8, we will subsequently use the
decoder presented in this chapter to build a Proof of Concept (PoC) PHY-layer
fingerprinting system for LoRa devices.

The structure of this chapter is as follows. In Section 7.2, we will present an
overview of the LoRa PHY layer in consideration of our first contribution. Sec-
tion 7.3 then shows how this knowledge can be applied to build a complete soft-
ware LoRa decoder. In addition, we detail our novel demodulation and clock
drift correction approaches. Our decoder will be compared in terms of compat-
ibility with existing LoRa hardware and accuracy in Section 7.4, followed by a
discussion of these results. Works related to this research will be discussed in
Section 7.5. Finally, in Section 7.6, we will state the conclusions of this research.

7.2 LoRa PHY layer

In order to correctly decode LoRa-modulated data, a receiver must sequentially
perform seven operations on the PHY layer, namely detection, synchronization,
demodulation, deinterleaving, dewhitening, decoding, and packet construction. A
partial description of these operations can be found in several technical reports
released by Semtech [233, 235, 236, 251] and in the paper presented by Goursaud
et al. [108]. However, the information contained within these works is insufficient
to build a decoder that can interoperate with real hardware LoRa transceivers.
To this end, we have reverse engineered a RN2483 LoRa transceiver, and provide



138 CHAPTER 7. A MULTI-CHANNEL DECODER FOR LORA

the first complete overview of the LoRa PHY layer in this section.

7.2.1 Modulation

The LoRa modulation scheme is based on Chirp Spread Spectrum (CSS) modu-
lation [108], and defines a “chirp” as a single symbol [236]. A standard, unmod-
ulated linear chirp is called a “base chirp”, and can be mathematically described
in function of the time t as follows [161]:

x(t) = ei(φ0+2π( k
2 t

2+f0t)), t ∈ [0, T ] (7.1)

where φ0 is the initial phase, k is the rate of frequency change, and f0 is the
initial frequency. Given the channel bandwidth BW, the parameters f0 and k are
set so that the frequency increases from f0 − BW

2 to f0 +
BW
2 over the duration

T of the chirp. Hence, f0 = −BW
2 and k = BW

T . Here, the chirp duration T
depends on the bandwidth of the signal and on a parameter called the Spreading
Factor (SF) according to the relation T = 2SF

BW [233].

Given that x(t + nT ) = x(t) with n ∈ N, an integer value i ∈ {0, 1}SF can be
modulated onto the base chirp by introducing a time shift of t̂ = Gray−1(i) T

2SF

to the signal in Equation 7.1, where Gray−1 stands for a Gray decoding opera-
tion [109]. This way, a symbol is essentially quantized into 2SF time shift bins
divided over the bandwidth, called “chips”, that determine i. Upon reception of
a modulated chirp with an unknown time shift x(t + t̂), the chip value i can be
recovered by sampling the signal at the chip rate and calculating:

i = Gray(argmax( |FFT( x(t+ t̂)⊙ x(t) )| ) ) (7.2)

where x(t) denotes the conjugate of a base chirp, the ⊙ operator indicates
element-wise multiplication, |FFT(x)| signifies the magnitude of the Fast Fourier
Transform (FFT) of x, and Gray stands for Gray encoding. Figure 7.2.1 shows
an example where a value of i = 20 is modulated onto the base chirp, shifting it
by 192 samples.
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Figure 7.2.1: Example of an unmodulated LoRa base chirp and a chirp modulated with
i = 20. The top rows of the figures show the time domain complex signal, whereas the
bottom rows of the figures show the instantaneous frequencies of the signals in Hz.

7.2.2 Interleaving

When using the modulation approach described above, errors can be introduced
due to noise, interference, and time or frequency offsets. These errors cause
the receiver to derive an incorrect chip value from the modulated symbol. For
example, a burst of noise could cause the peak of the FFT spectrum to appear
at a different chip, therefore corrupting the entire chip value.

In order to limit the impact of bursty noise to a single bit error per symbol,
multiple chip values are stacked together such that a bit matrix {0, 1}SF×(4+CR)

is obtained. Here, the Coding Rate (CR) or equivalently, the number of parity
bits, can range from 1 to 4. For example, when using SF = 7 and CR = 4, we
obtain a matrix {0, 1}7×8 as shown in Figure 7.2.2. A codeword of 4 + CR bits
is then obtained by diagonally deinterleaving the matrix. As such, the first chip
value provides all first Least Significant Bits (LSBs) of the codewords, the second
chip value provides all second bits of the codewords, etc. The direction of the
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Figure 7.2.2: Diagonal deinterleaving with SF = 7 and CR = 4. The bits of the third chip
value are shown in bold.

interleaving diagonal appears to be upwards in practice, in contrast to the LoRa
patent where the interleaving diagonal direction is downwards1 [233]. Observe
that as a result of the interleaving operation, an entirely corrupted chip value
now only affects one bit per codeword.

The LoRa specification also defines a “reduced rate” mode, in which the top two
rows of the interleaving matrix are discarded. Consequently, the dimensions of
the matrix become {0, 1}(SF−2)×(4+CR), yielding two codewords less after dein-
terleaving. The discarded rows correspond to the LSBs of the chip values, which
are more prone to errors because they correspond to narrower frequency bins
in the FFT spectrum. Therefore, in reduced rate mode, a decreased data rate
is traded for an increased robustness to noise. The PHY layer header of LoRa
frames is always transmitted in reduced rate mode, whereas the payload bytes
are only transmitted in reduced rate mode when SF 11 or SF 12 is used [235, p.
28, 112].

7.2.3 Coding

After deinterleaving, a number of codewords of size 4 + CR are obtained by the
receiver. The codewords of the frame payload are “whitened” in order to keep
the data Direct Current (DC)-free [235, p. 75]. Here, whitening is defined as an

1Note that this has no impact on the decoding performance.
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operation where the data is XOR-ed with a 9-bit LFSR after synchronization [235,
p. 72]. The used coding algorithm is not explicitly mentioned in the patent or
chipset datasheet [233, 235], leaving this an open choice to the vendor.

For the transceivers we considered during our tests (see Section 7.3), we have
reverse engineered the coding scheme and discovered that a modified version
of 4/(4 + CR) Hamming coding is utilized in practice. Hence, each codeword
results in 4 data bits when decoded, which are subsequently parsed according
to the LoRa frame structure. In Section 7.3.3, we will discuss our approach for
decoding the data further.

7.2.4 Frame structure

On the PHY layer, LoRa defines a frame structure with the following sequentially
transmitted fields [235, p. 27–29]:

• Preamble: A variable-sized sequence of base chirps that is used for time
and frequency synchronization.

• Frame synchronization symbols: Two modulated chirps whose value
can be used as a network identifier. A hardware LoRa transceiver will drop
frames containing synchronization symbols that do not match a preconfig-
ured value.

• Frequency synchronization symbols: Two conjugate base chirps fol-
lowed by a conjugate chirp with duration T

4 , which can both be used for
fine frequency synchronization.

• Header (optional): Field containing the payload length, used data rate, a
bit indicating the presence of a payload CRC, and 1-byte header checksum.
A CR of 4 is always used in combination with reduced rate mode for the
header2 [233]. The header can be explicitly transmitted (explicit mode) or
left out of the frame (implicit mode). In the latter case, the transmitter and
receiver must configure the coding rate and CRC presence bit beforehand.

• Payload: Variable-length field containing the transmitted MAC layer data
and a 2-byte CRC of this data.

Figure 7.2.3 shows an example LoRa signal and its frame structure.
2Since the header contains the payload length and coding rate, it is essential that these fields
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Figure 7.2.3: Annotated spectogram of an example LoRa signal transmitted with the
RN2483 LoRa transceiver using SF 11 and CR 5, and received with a USRP B210 SDR.
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Figure 7.2.4: The fields of the LoRa PHY layer.

Header structure

The exact length and bit order of the fields in the PHY layer header are not
explicitly stated in the specifications. However, since the transmission of an
explicit header requires a SF of at least 7, and the header is always transmitted
with CR = 4 at a reduced rate [233], the header must fit in an interleaving matrix
of {0, 1}(7−2)×8. Therefore, the header length must be equal to 5 codewords of 8
bits, i.e. 40 bits in total. Any remaining bits in the interleaving matrix are used
for the payload.

After decoding, the header data thus has a length of 40 · 4
8 = 20 bits or 2.5

bytes. We have experimentally determined that when transmitting data using a
Microchip RN2483 LoRa transceiver, the left-to-right order of the PHY header
is as follows: a single payload Length byte, followed by a nibble for the CR and
MAC CRC presence, the High Nibble (HN) of the header checksum, and finally
the Low Nibble (LN) of the header checksum3. An overview of these fields is
given in Figure 7.2.4.

are decoded correctly. Hence the increased robustness measures.
3Only the 5 LSBs of the checksum byte appear to be used in practice.
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Figure 7.3.1: An overview of the LoRa decoder components, showing the various logical
processing blocks required for the transmission and reception of baseband I/Q samples with
an SDR.

7.3 Software demodulator

We have implemented the complete PHY layer of LoRa in software, using the
open source GNU Radio signal processing framework. The source code of the
decoder is publicly available on Github4. An overview of the decoder components
is given in Figure 7.3.1.

7.3.1 Detection and synchronization

As a first step in the demodulation process, the receiver must detect the LoRa pream-
ble. To this end, we exploit the repeating property of the preamble by using
the Schmidl-Cox algorithm, which defines two quantities P (d) and R(d) as fol-
lows [230]:

P (d) =

L−1∑
m=0

(x∗
t+m xt+m+L) (7.3)

R(d) =

L−1∑
m=0

|xt+m+L|2 (7.4)

4https://github.com/rpp0/gr-lora

https://github.com/rpp0/gr-lora
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where L is the length of a symbol, t is the sample index of the complex signal
x, and x∗ denotes the complex conjugate of x. Next, P (d) and R(d) are used to
calculate a timing metric M(d):

M(d) =
|P (d)|2

R(d)2
(7.5)

The timing metric M(d) essentially calculates a normalized autocorrelation of
length L over two symbols, which will be maximal when two consecutive symbols
are encountered in the signal. An added advantage of this approach is that any
errors introduced by the channel or SDR (e.g. interference, Carrier Frequency
Offset (CFO) and Sampling Frequency Offset (SFO) errors), consistently influ-
ence both symbols and therefore minimally affect the result of the correlation. To
efficiently compute Equation 7.3 – 7.5 in software, we use Single Instruction, Mul-
tiple Data (SIMD) instructions provided by Vector Optimized Library of Kernels
(VOLK). Figure 7.3.2 (a) shows the resulting value of the timing metric M(d)
when evaluated for a complex LoRa signal. Observe that the function reaches a
plateau around sample 2,500, which confirms the presence of a preamble.

Although the Schmidl-Cox algorithm can determine the presence of a preamble
effectively, the plateau of the timing metric leads to uncertainty as to the start
of the symbol [230]. Wang et al. proposed a variation on the Schmidl-Cox algo-
rithm where M(d) is subtracted with a time-delayed version M2(d) of itself [273].
Consequently, the plateau becomes a peak as shown in Figure 7.3.2 (b), mak-
ing it possible to take the argmax of the timing metric in order to estimate the
start of the preamble. However, for LoRa signals, this estimate is not sufficiently
accurate, as shown in Figure 7.3.2 (c).

To solve this problem, we only use the standard Schmidl-Cox metric with a
threshold to assert that the second symbol window is located anywhere inside the
preamble. Next, we generate an ideal, locally synthesized base chirp and calculate
its instantaneous frequency ωl(t), as well as the instantaneous frequency of the
received LoRa signal ω(t). Finally, a sliding window normalized cross-correlation
is performed, and the index of the maximum value of the cross-correlation is
chosen as the starting point of the symbol:

symbol start = argmax
i∈{0,1,...L}

(ωl ⋆ ω)(i) (7.6)
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Figure 7.3.2: Normalized instantaneous frequency of a LoRa signal (blue) and the normal-
ized Schmidl-Cox timing metric M(d) (orange). The vertical red lines indicate the symbol
window length L. In (a), the timing metric reaches a plateau upon encountering two con-
secutive and identical symbols. A modified version (b) results in a single peak at the first
symbol, but is insufficiently accurate to determine the start of the preamble (c). Our syn-
chronization using the normalized cross-correlation of the instantaneous frequency (d) shows
a sharp peak at the start of each preamble symbol.

The result of this operation is visualized in Figure 7.3.2 (d). Note that by per-
forming the cross-correlation on the instantaneous frequency of the signals instead
of their complex values, any CFO errors imparted by the channel are automat-
ically mitigated similarly to the Schmidl-Cox algorithm. Thus, the accuracy of
the synchronization is not affected by the CFO. On the contrary, if one would
consider the complex-valued signals, a correction of frequency errors introduced
by the channel and SDR would have to be performed before the signal can be
cross-correlated with the locally synthesized chirp.

At last, in order to verify the correctness of the time synchronization, we threshold
against the maximum correlation coefficient between the instantaneous frequency
of the locally generated chirp and received chirp. The LoRa frame is rejected if
the correlation coefficient falls below a certain tolerance value, since this indi-
cates a failed synchronization or false positive during the detection stage (see
Section 7.3.1).
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7.3.2 Demodulation

Following time synchronization, the receiver can demodulate the chip values as
discussed in Section 7.2. However, the FFT-based demodulation approach spec-
ified in [233] is sensitive to frequency offset errors, which cause the magnitudes
of the FFT (and thus the chip values) to shift. Therefore, besides time synchro-
nization, an accurate frequency synchronization is also required. Furthermore,
this synchronization must be applied for each LoRa channel separately in order
to fulfill our requirement of multi-channel decoding motivated in Section 7.1.

Since channelization and separate processing of each channel is an expensive op-
eration to perform in software, and since we would like to retain any frequency
offset errors caused by the transmitters so that we can fingerprint them as dis-
cussed in Chapter 8, we have developed a novel demodulation technique that
is independent of the frequency. Our technique removes the need for frequency
corrections and allows to decode LoRa frames in real time on all channels and
without additional processing overhead, but at the cost of a reduced robustness
compared to the FFT approach discussed in Section 7.2.1. This tradeoff will be
discussed in Section 7.4.

In our methodology, we first calculate the instantaneous angular frequency ω[t] =
dφ[t]
dt . We then smoothen and decimate ω[t] with a constant decimation factor of

sfT

2SF
, where sf is the sampling frequency. This ensures that the number of samples

in ω[t] is equal to 2SF . Subsequently, the digital gradient of f is calculated:

Dt[ω[t]] = ω[t+ 1]− ω[t] (7.7)

This operation can be intuitively seen as a high pass filter on the instantaneous
frequency, or as the second order derivative of the phase. Since the frequency
of a base chirp linearly increases with k, i.e. ω(t) = kt + f0, its derivative ω′(t)
is equal to k. For a modulated chirp however, Dt will exhibit a sharp peak at
the transition from high to low frequency. If present, the position of the peak
indicates the time shift t̂. Otherwise, the time shift is equal to 0 (base chirp).

7.3.3 Decoding

In the decoding stage, the chip values are deinterleaved to form codewords of
4 + CR bits. The first 8 codewords of a frame can be directly decoded to form
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p0 p1 p3 p2 d3 d2 d1 d0
 1  1  0  1  0  0  0  1

p0 p1 d3 p2 d2 d1 d0 p3 
 1  1  0  1  0  0  1  0

Parity:
Data: 

0111
0001

LSBMSB
Bit      7        6         5         4          3         2         1         0   

Figure 7.3.3: The bit mapping of an example Hamming codeword used in LoRa (top) to a
standard Hamming code (bottom), for a CR of 4 and data 0x1.

the PHY-layer header. On the other hand, we found that the payload symbols
must be dewhitened first. Although the datasheet released by Semtech specifies
the usage of a 9-bit LFSR, a different and unknown whitening LFSR appears to
be implemented in practice [31, 136]. We have reverse engineered the whitening
sequence using the following approach.

If we represent the whitening process as c
(j)
w = c(j) ⊕ w(j) with cw the whitened

codeword, c the unwhitened codeword, w the output of the LFSR and j the
byte index, we can determine w(j) by transmitting a known codeword c(j) and
calculating w(j) = c

(j)
w ⊕ c(j). For example, a payload with all codewords set to

zero will result in w(j) = c
(j)
w ⊕ 0, or the whitening sequence itself. Hence, after

transmitting a payload consisting of all zeros, the resulting whitening sequence
can be retrieved and stored in a lookup table.

With knowledge of the whitening sequence w, the last step after dewhiten-
ing is to perform Hamming decoding on the codewords. We found that in
LoRa transceivers, the data bits are positioned at bit indices 0, 1, 2, and 3 of a
byte. This is in contrast to standard Hamming which uses indices 1, 2, 3, and 5
as data bits. This mapping is graphically depicted in Figure 7.3.3. After extrac-
tion of the data bits and error correction or detection based on the present parity
bits, the demodulator outputs the data to a UDP socket for further processing
by higher-layer applications.
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7.3.4 Clock drift correction

The crystal oscillators in the SDR and LoRa transceiver inherently have a relative
and unknown clock drift, which causes a loss of synchronization over time. This is
especially problematic for long payloads in combination with higher SFs due to the
symbol lengths in these configurations. To correct for the clock drift, we propose
a blind estimation technique5 that exploits oversampling of the transmitted signal
at a rate of N .

As a first step, our technique requires an accurate initial acquisition of the timing
offset using the algorithm discussed in Section 7.3.1. Assuming that the timing
error per symbol ∆t, measured in number of samples, satisfies the inequality
|∆t| < N

2 , we can determine ∆t as follows:

1. The symbol is demodulated normally as described in Section 7.3.2, in order
to obtain the chip value i and the time shift t̂.

2. At the receiver, a locally generated ideal upchirp is now modulated using
i, which introduces a time shift of t̂l on the local signal (see Section 7.2).

3. Since the locally generated chirp is not subject to relative clock drift, the
timing error is: ∆t = t̂l − t̂. The receiver can now correct t̂ by adding a
time offset of ∆t to the received signal.

Note that if the timing error for a single symbol |∆t| ≥ N
2 , the decoder will incor-

rectly determine the chip value i and therefore propagate the error to subsequent
symbols. For this reason, we interpolate from t̂ to t̂ + ∆t rather than setting
the value directly. This mitigates the effect of single-symbol demodulation errors
on the clock drift correction algorithm. A higher oversampling rate N allows
for more fine-grained timing error corrections at the cost of increased processing
overhead.

7.4 Evaluation

Our demodulator was evaluated in a lab setup using different SDR models and
LoRa hardware. More specifically, we have performed tests with the RN2483,

5Although the LoRa patent specifies the usage of “pilot” symbols for tracking timing [233],
these symbols appear to be absent in practice. We therefore need to make use of blind estimation
techniques.
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SX1272 and RFM96 configured as transmitters and the Ettus B210 USRP, Hack-
RF, and RTL-SDR configured as receivers. Each test was performed using a
carrier frequency of 868.1 MHz, a sample rate of 1 Msps, and a distance between
the transmitter and receiver of about 1 meter. The source code required for
reproducing the test results and datasets from the accuracy experiments are
publicly available on Github6.

7.4.1 Compatibility

In a first experiment, we evaluated the compatibility of our decoder with hardware
LoRa transceivers. Here, we used the USRP as the receiver and RN2483, SX1272
and RFM96 as transmitters. The compatibility was evaluated by transmitting
the payload “0123456789abcdef” 100 times for all possible combinations of CR
and SF, and checking the number of correctly decoded frames. A configuration is
considered compatible when transmitted LoRa frames are consistently correctly
decoded under ideal channel conditions and a high SNR.

The results of this experiment are shown in Table 7.4.1. Observe that the only
incompatible configurations are SF 11 and SF 12 for the RFM96 transceiver.
After a manual inspection, we found that the cause of this incompatibility is
due to the fact that the RFM96 transceiver does not enable the reduced data
rate mode as mandated in the LoRa specification [235, p. 28]. In fact, even
when transmitting a message from the RFM96 to either the hardware SX1272
or RN2483 hardware transceivers, the resulting frame is always corrupted for
SF 11 and SF 12. When we manually disabled reduced data rate mode in our
decoder, we achieved full compatibility with all devices. This confirms that the
issue lies within the hardware implementation of the RFM96, and shows that
our decoder can be used to troubleshoot incompatibilities between LoRa devices
from different vendors.

7.4.2 Accuracy

In the accuracy experiments, we measured the Packet Error Rate (PER), i.e. the
ratio of erroneous packets received over the total number of packets transmitted,
for a fully compatible transmitter configured with SF 7 and CR 4. We also
artificially introduce two types of channel distortions to the I/Q signal at the
receiver, namely Gaussian white noise and CFOs.

6https://github.com/rpp0/lora-decoder-paper

https://github.com/rpp0/lora-decoder-paper
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Figure 7.4.1: The effect of artificial Gaussian white noise on the accuracy of the decoder.
The PER of our decoder for all evaluated SDRs approaches 0 around a SNR of 20 dB.

Figure 7.4.1 shows the effect of artificial Gaussian white noise on the decoding
accuracy when using a SF of 8 and CR of 4, the RN2483 as a transmitter, and
the HackRF, RTL-SDR and USRP SDRs as receivers. The receivers were each
configured with a receive gain of 10 dB, and the transmit power of the RN2483
was configured to 1 dB. Note that even so, the effective receive gain between
the SDRs differs due to their different hardware and antenna designs. From the
figure we can derive that a SNR around 20 dB is at least required in order to
obtain a PER of 0 for all SDRs.

In Figure 7.4.2 (a), we used the USRP to add Gaussian noise at the transmit-
ter instead of the receiver in order to compare our decoder (RTL-SDR) with a
hardware LoRa transceiver (RN2483). For this experiment, both receivers were
placed at an equal distance from the USRP, and 100 frames with a payload of
“0123456789abcdef” were transmitted to calculate the PER. Observe that the
RN2483 is still capable of receiving frames well below the noise floor, whereas our
decoder stops receiving any frames at 0 dB SNR. At this point, the transient of
the gradient cannot be detected by our gradient-based decoding algorithm due
to the presence of excess noise.

On the other hand, when we introduce a CFO instead of Gaussian noise to the
transmitted signal, our decoder outperforms the hardware for a CFO larger than
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Figure 7.4.2: Comparison between the RTL-SDR using our software decoder versus a hard-
ware RN2486 LoRa transceiver in terms of resistance to Gaussian noise (a) and resistance to
frequency offset errors (b). Due to the properties of our gradient-based decoding algorithm,
our decoder is shown to be unaffected by frequency errors at the cost of a significantly
higher sensitivity to Gaussian noise compared to the RN2483.

50 kHz or when transmitting at a different channel as shown in Figure 7.4.2 (b)7.
The hardware device must be retuned in order to capture frames from a differ-
ent channel, whereas our decoder is capable of capturing frames from multiple
channels simultaneously.

Based on these observations, we conclude that our decoding technique essentially
trades flexibility (i.e., being able to decode multiple channels simultaneously at
no additional cost) for an increased sensitivity to Gaussian noise. Although
the increased sensitivity to noise reduces the functioning range of the receiver,
the flexibility of our approach allows for building a fully compatible and multi-
channel LoRa monitoring device at a very low cost. In Chapter 8, we will use
the discussed techniques to extract PHY-layer features from LoRa signals and
fingerprint individual transceivers.

7.5 Related work

A high-level system architecture overview of LoRa is given by Centenaro et al.
[45]. Sikken has provided a general overview of the LoRa frame structure and
decoding stages, but does not discuss the low-level details of the modulation [242].
Goursaud et al. have provided a detailed and formal analysis of LoRa modulation,

7Note that at 125 kHz, the PER of the RN2483 decreases momentarily back to 0.2. This
could possibly be explained by the CFO causing the FFT peak to wrap back to an approximately
correct position.
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but do not discuss the interleaving, whitening and coding [108].

A first complete analysis of the LoRa PHY was presented by Knight [136]. How-
ever, in their work, it is assumed that the dewhitening operation is performed
before deinterleaving, that the header is whitened, and that a different inter-
leaving pattern is used than the diagonal interleaving specified in [233]. Based
on our own experiments, we concluded that these claims are inaccurate. A de-
coder named gr-lora was developed based on their analysis, but appears to only
be able to decode short frames transmitted without a header. We believe this
limitation is the result of errors made during their reverse engineering process.

Other software LoRa decoders for SDRs have been developed by Blum et al. [31]
and by Project Sdrangelove [223]. However, we were unable to decode any frames
transmitted by hardware LoRa transceivers using these decoders. Finally, at the
time of writing, none of the decoders in other works have developed a clock drift
correction algorithm for decoding long LoRa frames.

Besides work on LoRa, GNU Radio based decoders have previously been de-
veloped to decode protocols such as Global System for Mobile Communications
(GSM) [9, 144], Long Term Evolution (LTE) [75], and 802.11 [28, 271] using
SDRs.

7.6 Chapter conclusions

In this chapter, we have provided an in-depth examination of the LoRa PHY
layer (C6), and demonstrated our open source LoRa software decoder, which is
implemented using the GNU Radio framework (C7). Our decoder can be used to
receive LoRa frames in real time with inexpensive SDRs such as the RTL-SDR,
and is able to interoperate with existing LoRa transceivers.

A set of frequency-invariant techniques for the detection, demodulation, and clock
drift correction of LoRa frames were furthermore introduced, which allow to de-
code multiple channels simultaneously in real time, at the cost of an increased
sensitivity to noise compared to COTS LoRa radios. More specifically, our eval-
uation shows that a SNR of at least 20 dB is required for the PER to approach
0. However, an additional benefit of our methodology is that any frequency off-
set errors imparted by the device are preserved, which allows us to fingerprint
LoRa devices. This aspect will be discussed in the next chapter of this thesis.
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8.1 Introduction

PHY-layer device identification is a technique through which it is possi-
ble to uniquely identify devices by looking at small differences in their analog
Radio Frequency (RF) signals. These differences are caused by imperfections of
their analog hardware components, which are often unique and allow to create
a fingerprint of the device [38, 116, 210]. PHY-layer device identification has
been proposed for various purposes such as access control and the detection of
cloning and wormholes [207]. Several works have demonstrated the feasibility
of PHY-layer device fingerprinting for a variety of wireless technologies such as
Radio Frequency Identification (RFID) or High Frequency (HF) and Very High
Frequency (VHF) transmitters (e.g. [68, 70]). However, limited research has been
performed in context of fingerprinting devices that implement newer LPWAN-
oriented protocols.

As mentioned earlier, LoRa has become one of the most promising wireless tech-
nologies for IoT appliances in LPWANs, suitable for devices that need to infre-
quently send small amounts of data over long distances. In terms of security
and privacy, the current LoRaWAN MAC specification provides built-in data
confidentiality, integrity, and device authentication. However, it does not offer
privacy. More specifically, all LoRaWAN messages contain a unique MAC ad-
dress that can identify the sender device [251]. Nonetheless, one could envision a
future, privacy-preserving version of the LoRaWAN protocol to support applica-
tions where a certain degree of privacy is needed. For example, the MAC address
could be periodically randomized similarly to current Wi-Fi implementations.
Alternatively, the LoRa PHY layer itself can be used in conjunction with other
MAC-layer protocols. However, even if a privacy-preserving MAC-layer protocol
is used, it remains unclear whether adversaries could still identify LoRa devices
based on their analog RF signals alone.

In this chapter we tackle exactly the problem outlined above and investigate
whether an adversary can identify, locate or track LoRa devices regardless of
any privacy-preserving mechanisms used in the higher layers. To this end, we
propose a fingerprinting methodology that applies supervised machine learning
techniques to radio signals in order to distinguish between multiple known trans-
mitters (C8). To demonstrate its feasibility, we apply this technique to devices
that use the LoRa modulation scheme. Our methodology is inspired by recent
advances in image and speech recognition, where state-of-the-art performance
was achieved using raw data [183, 245, 249]. Our classifier achieves 59%–99%
accuracy for 22 LoRa devices, even when devices with identical chipsets are far
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away from the fingerprinter. Additionally, our methodology can be applied to
any part of the frame in contrast to previous works, where only part of the frame
(e.g. the preamble [116, 205, 206]) is used for fingerprinting. Our technique is
fully automated, passive, does not rely on underlying properties of the modula-
tion scheme, and can be performed with sample rates as low as 1 Msps. This
is achieved by using the raw I/Q data as a high-dimensional feature vector, as
opposed to the conventional low-dimensional vector of features based on signal
error measurements [38] or statistical measurements (e.g. skewness, variance, kur-
tosis, etc.) [205, 206]. Moreover, we show how our classifier can be extended to
recognize previously unseen transmitters. This is achieved by applying zero-shot
learning techniques, where a classifier is evaluated without any available training
data for certain unknown classes. We performed a number of experiments that
reveal the effects of (i) the distance between the fingerprinter and the LoRa de-
vice, (ii) changing channel conditions, and (iii) the sample rate on the classifier’s
performance.

8.2 Fingerprinting LoRa on the PHY layer

PHY-layer fingerprinting leverages inherent small artifacts in the analog RF sig-
nals transmitted by wireless devices to uniquely identify them. These differ-
ences are caused by distinctive hardware or antenna designs, or imperfections
introduced in the analog hardware components during the manufacturing pro-
cess [38]. The PHY-layer fingerprint of any wireless device is also influenced by
other factors such as the channel conditions.

8.2.1 Features

As a first step in the fingerprinting process, a combination of radiometrics that
are sufficiently discriminative to uniquely identify the devices needs to be se-
lected. We will henceforth refer to such radiometrics as “features”. Similarly to
MAC-layer fingerprinting (see Chapter 6), the features selected for PHY-layer
fingerprinting should exhibit high intra-class stability and high inter-class vari-
ability. One the one hand, high intra-class stability entails that features extracted
from the same LoRa device should be consistent for multiple transmissions, suf-
ficiently resistant to changing channel conditions, and be independent of the
physical location of the device. This ensures that all radio transmissions sent by
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a single device are mapped to the same fingerprint. On the other hand, high
inter-class variability entails that features contain sufficient entropy, such that
transmissions by distinct radio chips can be easily distinguished.

8.2.2 Classification

In traditional approaches for classifying devices based on PHY-layer features, N
acquisitions of several features are reduced in dimensionality and then averaged
into one final, low-dimensional feature vector. This feature vector is subsequently
learned by a classifier in order to construct a template for a specific device [67,
71, 116, 210]. Finally, the template is matched with the device by means of a
similarity metric, such as Euclidian distance [210], entropic distance [116], or
KL-divergence [271].

Although such approaches allow to distinguish between devices with high accu-
racy, we can identify several shortcomings. First, N is determined empirically,
which makes these approaches hard to generalize for different channel conditions,
hardware, or modulation schemes. Second, the selection of which (combination
of) feature(s) to use depends on the expertise of the researcher. Such a man-
ual selection of features, which is performed in an iterative way, can influence
the result of the classifier on multiple levels. Some examples of these influential
choices include the selection of using the transient as a feature itself, followed by
sub-choices such as which sample rate to use, with which algorithm to extract
the transient [141], the time-synchronization between the N acquisitions observed
from the device to fingerprint, and which metric to use for defining the similar-
ity between two devices. A possible justification for choosing low-dimensional
features is that they require less computing power and training data, whereas
high-dimensional features suffer from the “curse of dimensionality” [23]. By man-
ually pre-selecting features, the classifier thus converges faster and requires less
training data, but suffers from the shortcomings discussed above.

We propose a novel per-symbol classification methodology that aims to overcome
some of these shortcomings by using high-dimensional features learned in an au-
tomated fashion. Our methodology is inspired by recent advances in Computer
Vision (CV), more specifically in image and speech recognition. Here, state-of-
the art classification results are achieved by learning on raw data, such as the
image pixels or time-domain waveform samples rather than manually selected
features [143, 245, 255]. To limit the dimensionality and to ensure payload in-
dependence of the classification, we apply our methodology to the information
contained in each i-th LoRa symbol s(t)(i) . . . s(t)(n) separately for a frame con-
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sisting of n symbols. The extraction of features from these symbols will be
discussed in Section 8.3.3.

Supervised classification

In our supervised classification approach, the fingerprinter is given a reference set
of F -dimensional input features x(1) . . . x(n) ∈ Xn×F extracted from s(t)(1) . . .
s(t)(n), and corresponding C-dimensional class label tensor y(1) . . . y(n) ∈ Y n×C .
Here, the “class” refers to a single radio chip of a device, where the corresponding
“class label” can be “LoRa 1–22”. Given a model parameterized by the learned
variables θ, the following loss function L(θ) is minimized during an initial training
phase:

L(θ) = − 1

n

n∑
i=1

F∑
f=1

y
(i)
f log(hθ(x

(i)
f )) (8.1)

In this equation, the hypothesis function hθ outputs the predicted class for each of
the different models given the learning model parameters θ, and the loss function
minimizes the cross entropy between the predicted and true class labels.

After the training phase, the classifier extracts features and evaluates the model
for each symbol in a LoRa frame in order to predict the most likely class. The
class of the transmitter can be determined by performing majority voting on the
symbols of the frame.

A requirement for accurate results under this classification approach is that a
sufficiently large reference set of training samples for each of the device classes
must be available. Furthermore, the accuracy depends on the quality of the
training samples. A device should ideally be fingerprinted under different channel
conditions. For example, by acquiring samples over a long period of time in order
to prevent overfitting of the model on specific channel conditions. In Section 8.3.4,
we will evaluate the effect of different channel conditions on the accuracy of our
classifier.
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Zero-shot classification

When fingerprinting a random observed radio signal, one typically would not pos-
sess a reference database of training samples for the associated (unknown) trans-
mitters. In this case, the difficulty of the classification task is increased. Tech-
niques that can deal with the absence of training data for some set of unknown
classes have been given several names over different domains: zero-shot classi-
fication [157, 249] (image recognition), semi-supervised anomaly detection [187]
(anomaly detection), or open set recognition (biometrics authentication). We
will use the term zero-shot classification henceforth in this work.

Despite not having training data for unseen classes, the fingerprinter can still
learn the attributes for a given set of known classes [146]. Such attributes can
be interpreted as high-level, semantically meaningful properties that are used to
describe a new class [145]. For example, if the attribute “CFO” of an unknown
instance differs by at least T Hz from a known class, it could be considered as
a new, unseen class1. The difficulty here is the choice of the threshold T , which
must be large enough to ignore noise and small enough to classify an unseen
instance as a new class.

Socher et al. [249] proposed a methodology to perform zero-shot learning on an
image recognition problem, where only a subset of all observed classes is known.
Since our LoRa fingerprinting objective is similar, we will apply a methodology
similar to theirs, with ideas incorporated from the work of Lu et al. [157].

Before applying zero-shot classification to PHY-layer fingerprinting, we first need
to determine whether an observed symbol belongs to a known class or to a pre-
viously unknown class. This can be considered as an outlier detection problem,
where the unknown classes are outliers. To accomplish this goal, we have modeled
the output values of the supervised classifier under a mixture of K multivariate
Gaussian distributions similarly to the work of Socher et al. [249]. Here, K is
the number of known classes, which is also equal to the number of output neu-
rons. The parameters µk and σk of each Gaussian Nk(µk, σk) are determined by
respectively taking the mean and standard deviation of the output values after
feeding the input features of a known class k to the neural network. Then, we

1A similar analogy can be made in the field of biology, where an unknown population can
be considered as a different species if its features deviate sufficiently from an already known
species.
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perform outlier detection by evaluating the indicator function:

1{
K∑

k=1

hθ(x)Nk(µk, σk) < T} (8.2)

where hθ(x) is the output of the hypothesis function parameterized by θ given x,
and T is an outlier tolerance threshold.

Next, the actual classification can be performed. If a symbol is not an outlier,
it should belong to a known class. Therefore, it can be classified using the su-
pervised classification approach from Section 8.2.2. In the other case, we used
the unsupervised DBSCAN [83] algorithm to cluster symbols transmitted by the
same unknown class together. The ϵ parameter of the DBSCAN algorithm, which
indicates the maximum distance between two points for them to be considered
as in the same neighborhood, was set to the mean of the minimum Euclidean
distance between all combinations of centroid pairs in {µk . . . µK}. This ensures
that symbols transmitted by different devices are appropriately mapped to dif-
ferent clusters, while symbols transmitted by the same device are mapped to the
same cluster.

8.2.3 Learning models

To model the observed features for our supervised and zero-shot classifiers de-
scribed in Section 8.2.2, several approaches could be considered. In this work,
we examined MLPs and CNNs (see respectively Sections 3.3.1 and 3.3.2 in the
Preliminaries part), due to their success in similar classification tasks for other
domains such as facial and speech recognition. Additionally, we briefly examine
SVM-based models due to their popularity in previous PHY-layer fingerprinting
works.

Multilayer Perceptron

Our MLP model consists of one fully connected hidden layer with ReLU activation
functions, and one fully connected output layer. Hence, the input features are
mapped to the output device classes using the hypothesis function:

hθ(x) = σ(ReLU(xW1 + b1)W2 + b2) (8.3)
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Figure 8.2.1: Architecture of our CNN model for 1024-dimensional inputs. The dimensions
of each layer are indicated between square brackets.

Where σ denotes the softmax function, and W and b respectively denote the
weights and biases of the neurons. The softmax function scales each output
from the classification of x(i) to form a discrete probability distribution for each
y ∈ Y . Thus, the model learns the estimated probability that the symbol was
transmitted by the device with label y.

Convolutional Neural Network

Recall that CNNs learn parameters to cross-correlation filter layers, which allows
them to identify both low level details at shallow layers and high-level features
at deeper layers. Our CNN fingerprinting architecture consists of two hidden
1D convolution layers with kernel size k and ReLU activation functions, followed
by a fully connected layer and softmax function for performing the classification,
as shown in Fig. 8.2.1.
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C-Support Vector Classification

SVMs are trained to find an optimal hyperplane, in which the margin of separa-
tion between two classes is maximized [118]. A different cost function from the
previously discussed models is used, which takes on the following form (using the
original notation) [48]:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (8.4)

constrained by:

yi(w
Tϕ(xi) + b) ≥ 1− ξi, and ξi ≥ 0, i = 1, . . . , l (8.5)

In our experiments, we have used the SVM implementation of sklearn [193],
which uses a one-vs-one scheme to perform multiclass classification.

8.3 Implementation and results

8.3.1 Laboratory setup

Our laboratory setup comprises inexpensive COTS hardware such as SDRs in-
cluding an Ettus Research USRP B2102 and a HackRF3, antennas and a commer-
cial standard laptop. All our experiments were performed with 5 different types
of LoRa devices which all transmit at 868 MHz. Table 8.3.1 gives an overview
of all LoRa classes including their chipset, identifiers and quantity. We designed
a custom power supply board, which remained fixed in the same position, where
we plugged in the LoRa transceivers before starting each of the fingerprinting ex-
periments. This ensures that our results are minimally influenced by the distance
between the SDR and LoRa devices.

2https://www.ettus.com/
3https://greatscottgadgets.com/hackrf/

https://www.ettus.com/
https://greatscottgadgets.com/hackrf/
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Table 8.3.1: Overview of all LoRa devices involved in the experiments and their chipset,
identifiers, and quantity.

Device Chipset Identifiers Qty.
Custom board RN2483 LoRa 1–3 3
Pycom LoPy SX1272 [202] LoRa 4 1
Dragino LoRa/GPS HAT RF96 [81] LoRa 5 1
Adafruit Feather 32u4 RF96 [7] LoRa 6 1
RN2483 breakout board RN2483 [15] LoRa 7–22 16

8.3.2 Signal acquisition

To obtain samples for our symbol classifier, each of the 22 LoRa devices used
in the experiments was configured to continuously transmit frames with a 4-byte
payload, using coding rate 4/8 and SF 7. This configuration yields 36 symbols per
frame. The payload bytes were randomized to ensure that the resulting symbol
values are random as well, thus removing any bias due to the payload data. Both
the training and test samples from the LoRa transmissions were acquired with
the B210 USRP tuned to a 868 MHz carrier, and a sampling rate that varies
from 1 Msps to 10 Msps. To mitigate the effect of the USRP’s DC bias filter,
we configured our receiver program to capture signals at 868.1 MHz instead of
868 MHz.

To minimize the impact of translation variance of the features, each symbol needs
to be time synchronized. For this purpose, we have used our custom LoRa decoder
that was discussed in Chapter 7. Recall that our decoding algorithm preserves
frequency offset errors imparted by the transmitters, so that we can use these
as a feature in the classification while still being able to time-synchronize to
the symbols. After extracting all synchronized symbols from the frame, the
classifier needs to be trained on their features in order to distinguish between
different LoRa transmitters. However, feeding the symbols directly to the model
would increase the required training data by a factor of at least 2SF , since each
symbol can have 2SF possible values. Furthermore, if by chance a certain symbol
value occurs more frequently for a specific device in the training set, the model
will overfit and incorrectly assume that this symbol value implicates a higher
classification probability for that device.

The following approach was applied to mitigate this problem. We first calculate
the ideal cyclic shift k of the symbol, i.e. its demodulated value. Then, we
modulate the symbol with value k = −k. Given that the number of chirps per
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Table 8.3.2: Overview of the datasets used in this work.

ID # Symbols Sampling rate Date
I 495,216 1 Msps January 27, 2017
II 124,740 1 Msps January 30, 2017
III 497,595 2 Msps January 17, 2017
IV 127,476 2 Msps January 27, 2017
V 221,622 5 Msps February 2, 2017
VI 55,908 5 Msps February 3, 2017
VII 219,718 10 Msps January 31, 2017
VIII 56,528 10 Msps February 3, 2017

symbol is given by c and that s(t+nT ) = s(t) (see Section 7.2.1), the modulated
symbol ŝ(t) becomes:

ŝ(t) =

{
s(t+ c−(k+k)

c T ), if t < k+k
c T

s(t− k+k
c T ), otherwise

= s(t) (8.6)

Hence, as a result of this operation, each modulated symbol ŝ(t) is transformed
back to the base chirp s(t), and the errors introduced by the hardware are pre-
served.

An overview of all collected datasets is given in Table 8.3.2. We will refer to these
datasets in future sections of this work using their respective Roman numeral
label.

8.3.3 Classifier training

For implementing and training the models described in Sect. 8.2.3, we use the
tensorflow machine learning framework presented by Abadi et al. [4]. Before the
training process, the entire dataset of collected features and labels is uniformly
randomized. Then, a training set of 10,000 symbols and a cross validation set
of 10,000 symbols are fetched from the dataset for evaluation during training. A
test set of 1,500 symbols is used for evaluation after training. The randomization
process ensures that the training set is not biased by any particular device.

The LoRa symbols from each dataset are converted to a feature tensor. As mo-
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tivated in Sect 8.2.2, the I/Q signal could be used directly as a high-dimensional
feature. Since tensorflow cannot operate on complex values however, the I/Q
value can be decomposed into its amplitude and phase. In our approach, we
instead use the magnitude of the Fourier transform of the signal, since we are
interested in the CFO as a distinguishing features between the LoRa transmit-
ters. Considering the LoRa configuration parameters and receiver sample rate,
the matrix of feature tensors for n symbols is X ∈ Rn×m, with

m = 2SF fs
BW

(8.7)

where SF is the spreading factor, fs is the sampling rate of the receiver, and
BW is the bandwidth.

Next, each used feature tensor x(i) was z-score normalized to prevent extreme
gradient values from occurring during the training phase:

x̂(i) =
x(i) − µx(i)

σx(i)

(8.8)

This normalization also helps to reduce the effect of the absolute magnitude on
classification, which is undesired since we do not distinguish devices based on
their transmission power or physical location.

Finally, in each training step we feed a mini-batch of b < n tensors to the classifier,
and periodically log training set accuracy, test set accuracy, and cost function.

8.3.4 Fingerprinting experiments

Using the models defined in Section 8.2.3, we have trained and evaluated clas-
sifiers to distinguish between vendor models as well as individual LoRa devices.
Furthermore, we have investigated the effect of the sample rate, distance, and
channel conditions on the subset accuracy, macro-averaged precision, and macro-
averaged recall of the classifier. Here, the subset accuracy is the proportion of
labels with entirely correct predictions [99], i.e.:

subset accuracy =
1

n

n∑
i=1

1{h(i)
θ (x(i)) = y(i)} (8.9)
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where 1 is the indicator function that is equal to one when argmax h
(i)
θ (xi) = y(i).

Macro-averaged precision and recall are defined as:

macro-averaged precision =
1

|Y |

|Y |∑
y=1

tpy
tpy + fpy

(8.10)

macro-averaged recall = 1

|Y |

|Y |∑
y=1

tpy
tpy + fny

(8.11)

with tpy the number of true positives for label y, fpy the number of false positives
for y, and fny the number of false negatives for y. In each of the following
experiments, these metrics were calculated using scikit-learn [193].

Supervised classification experiment

In a first experiment, we have trained our models with labeled instances for the
purpose of distinguishing between different device vendors and different devices
of the same type. Intuitively, the former should be easier to distinguish as the
analog hardware layout and design between various vendors should differ more
compared to multiple devices of the same vendor model. Multiple devices of the
same vendor model only differ as a result of manufacturing variations.

Based on our findings, the crystal oscillator of the radio chip is especially suscep-
tible to fingerprinting, since small differences in the oscillation frequency of the
crystal will introduce a measurable CFO error [271]. Indeed, the datasheet of the
SX1272 LoRa radio chip states that the RF center frequency is derived from a
reference crystal oscillator with a finite frequency precision [235]. Although such
errors are benign in ordinary communications due to the tolerance levels of the
LoRa modulation scheme, they can be exploited to fingerprint individual radio
chips.

Contrary to previous works, where the CFO is explicitly measured as a scalar
based on (averaged) samples of the signal [38, 69, 271], our approach uses the
raw signal directly. As such, the CFO error manifests itself as a constant drift of
the phase. This drift can be observed when examining the averaged unwrapped
phase values of several symbols transmitted by the same radio chip (see Fig. 8.3.1
(a)). However, since the phase difference is small for each of the many sample
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points, it is difficult for our classifier to learn this feature4. We mitigate this
issue by transforming the signal to the frequency domain using the FFT and
taking the magnitude. As a result of this transformation, the phase drift will
shift the entire frequency spectrum, resulting in a large frequency difference for a
few sample points of the FFT (see Fig. 8.3.1 (b)), which is easier for a classifier to
learn. In both figures, a small CFO error can be observed between devices which
have identical radio chips, whereas a large error is observed between different
radio chip models, i.e. between the SX1272 (yellow), RF96 (cyan, magenta), and
RN2483 (remaining colors). Finally, note that besides the CFO, other distinctive
frequency components may be discovered by the classifier.

The datasets used for evaluating our classifier are shown in Table 8.3.2. For
the test sets under identical channel conditions (I, III, V, VII), a disjoint and
randomized subset from the same dataset was selected. The test sets under
different channel conditions (II, IV, VI, VIII) were sampled from data sets
which were recorded on a different day from the training set. Each model was
trained for 10,000 epochs, which depending on the used model corresponds to
several hours of training on a Dell Precision T3610 with an Intel® Xeon® E5-
1620 v2 CPU (3.70GHz). Table 8.3.3 summarizes the results of feeding these
datasets to the MLP, CNN, and SVM classifiers when fingerprinting individual
chipsets. When fingerprinting the 3 chipset vendors, the accuracy was 99-100%
for all datasets and classifiers (not shown in the table). Figure 8.3.2 shows a t-SNE
visualization of the output weights learned by the MLP model after training on
dataset III. We can observe several clusters corresponding to the different LoRa
devices.

For the results of the remaining experiments that will be presented in the following
sections, only dataset III and the MLP model were considered. We believe these
results are the most interesting to mention, since 2 Msps is the maximum sample
rate of low-cost SDR devices, such as the RTL-SDR, and since the MLP model is
faster to train while achieving similar or better accuracy compared to the CNN
and SVM models.

4A projection of the symbol phase to a 2D grayscale image would display the CFO error of
a device as a slight difference in brightness.
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Table 8.3.3: Accuracy, precision, and recall when fingerprinting individual chipsets using
supervised learning with test sets of 1,500 symbols.

Dataset Model Accuracy Precision Recall Ident. chan. cond.
I SVM 68.80% 63.08% 69.37% Yes
I CNN 89.40% 90.32% 89.23% Yes
I MLP 93.33% 93.32% 93.04% Yes
II SVM 53.80% 48.17% 52.09% No
II CNN 58.60% 55.94% 58.15% No
II MLP 58.67% 52.87% 58.19% No
III SVM 76.27% 76.01% 76.05% Yes
III CNN 94.27% 95.16% 94.88% Yes
III MLP 95.40% 95.61% 95.34% Yes
IV SVM 59.53% 62.66% 59.99% No
IV CNN 67.60% 73.64% 68.17% No
IV MLP 71.47% 75.04% 72.36% No
V SVM 83.00% 83.07% 82.77% Yes
V CNN 96.53% 97.03% 96.78% Yes
V MLP 99.00% 99.03% 98.98% Yes
VI SVM 69.33% 67.07% 70.23% No
VI CNN 76.80% 82.56% 76.72% No
VI MLP 75.07% 74.89% 75.37% No
VII SVM 80.93% 80.61% 81.24% Yes
VII CNN 97.87% 98.03% 97.96% Yes
VII MLP 98.67% 98.77% 98.63% Yes
VIII SVM 56.53% 53.02% 57.94% No
VIII CNN 60.33% 62.00% 62.22% No
VIII MLP 60.80% 58.75% 63.07% No

Zero-shot classification experiment

A second experiment evaluates our zero-shot classification approach from Sec-
tion 8.2.2 after training on 10,000 random symbols from dataset III. Here, the
randomization and training procedures were identical to the previous experiment,
except that we excluded symbols belonging to certain classes from the training
set. We subsequently observed whether the classifier was able to cluster these un-
known classes together. The results of this experiment are shown in Table 8.3.4.

We observed that the accuracy of the zero-shot classification largely depends on
which devices are excluded from the training set. For example, in experiment
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Table 8.3.4: Accuracy, precision, and recall for the unknown “outlier” classes from the
zero-shot classification experiments. The evaluation was performed on 1,500 symbols from
dataset III.

Experiment Excluded Accuracy Precision Recall
ZS1 4,5,6 70.98% 75.36% 75.00%
ZS2 4 100.0% 100.0% 100.0%
ZS3 2,3,9,10,11 66.67% 41.45% 38.78%
ZS4 8,12,14,16,21 65.22% 48.55% 53.33%
ZS5 15,17,20 75.00% 63.44% 71.43%
ZS6 7,13,14 88.35% 67.82% 65.00%

ZS1, LoRa 4, 5 and 6 were excluded from the training set. Hence, the model was
trained only on devices that have a RN2483 chipset. As a result, the classifier
was not able to distinguish LoRa 5 and 6, i.e. both were grouped in the same
cluster. This problem can be mitigated by including LoRa devices with similar
fingerprints in the training set (see ZS6 in Table 8.3.4).

Effect of sample rate and channel

Ideally, our fingerprinter should be able to classify devices at low sample rates
and various channel conditions. Therefore, we investigated the effect of these
aspects on the classifier accuracy.

Ramsey et al. found that the fingerprinting accuracy increases with the sampling
rate, but does not further improve above the Nyquist frequency [206]. On the
contrary, in our experiments we observed that, under identical channel conditions,
a sampling rate above the Nyquist frequency (250 KHz) increases the accuracy
when devices have similar fingerprints. A higher sampling rate results in a higher
granularity of frequency bins of the FFT spectrum, which allows the fingerprinter
to detect more fine-grained frequency errors. Perhaps this effect was not noticed
in [206] because of the lower number of devices involved in their experiments: the
fingerprints could have been distinctive enough at a low sample rate already.

Table 8.3.3 shows the classifier accuracy, precision, and recall when using the
learning models with datasets of different sample rates. The MLP classifier for
example achieves 93% per-symbol accuracy for 22 LoRa devices under identical
channel conditions, with sample rates as low as 1 Msps. However, when the
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channel conditions change, the accuracy drops for each of the sample rates. This
is to be expected, since the crystal oscillator may undergo temperature changes
over time, which causes its frequency to change and subsequently overlap with
training data from a different radio chip. When examining the confusion matrix,
we observed that the misclassifications indeed mostly occur with neighboring
clusters (see Fig. 8.3.2). This issue could be mitigated by providing more training
data gathered over an extended period of time or by periodically updating the
model (i.e. “adaptive learning”) to reflect changes in the channel conditions. Such
adaptive learning models could be considered in future work.

Effect of distance

We evaluated how increasing the distance between the LoRa devices and the
fingerprinter affects the accuracy of our classifier. For this purpose, we performed
a series of experiments within a building, where the fingerprinter was always kept
in the same location, whereas the LoRa devices were placed in three different
locations. In the first experiment, the LoRa devices were in an adjacent room
which is approximately 20 meters away from the fingerprinter (D1). In the second
and third experiment, the LoRa devices were placed in a room that is 50 meters
(D2) and 100 meters away (D3) from the fingerprinter, respectively.5

For the signal test sets collected from D1, D2, and D3, our classifier respectively
achieves an accuracy of 94.33% 98.40% and 96.40% after training on signals
from the respective location. However, we found that the classifier achieves only
22.00% – 30.60% accuracy when a test set from one location is evaluated on a
model that was previously trained on signals from a different location. From this
observation we can conclude that the channel conditions significantly impact the
accuracy of our classifier. In Section 8.4, we will briefly describe two possible
ways to overcome this problem.

8.4 Discussion and implications

Training with artificial noise: Our experiments reveal that the accuracy of
our classifier degrades under different channel conditions. In other words, our
classifier can distinguish between devices more accurately when the LoRa signals
in the training and testing phases are captured under similar channel conditions.

5Note that for the second and third experiments we used another antenna for LoRa 4, since
the received signal was too weak.
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Intuitively, one way to overcome this problem would be to use adaptive learn-
ing, which allows the classifier to continuously learn and dynamically adapt the
models. However, this approach is susceptible to attacks where adversaries try
to maliciously influence the way the classifier learns in their favor such that their
signals are eventually considered as the signal of a fingerprinted device. Another
possibility to mitigate this problem would be to add artificial noise to the training
signals of the classifier, which could be used to simulate varying channel condi-
tions in practice. There exist a wide range of techniques to model and estimate
several types of communication channels. Similar techniques are applied in the
domain of image recognition. Here, the training images are distorted in various
ways to reduce overfitting of the classifier.

Fingerprinting for identification systems: In context of using radiometrics
for the authentication of devices, we acknowledge that all (including our) existing
PHY-layer identification systems are susceptible to impersonation attacks. Some
previous works for instance rely only on extracting features from a small part
of the signal, such as the preamble or the sync word for fingerprinting devices.
In this case, adversaries could easily mount an attack by simply replaying the
preamble or sync word of a signal and then appending their own payload signal.
In our approach, the adversary would need to be able to mimic the PHY-layer
features of the majority of all the symbols6 within the entire message in order
to identify as a legitimate device. This would be harder to achieve, but is still
not secure because when using an SDR, the adversary has complete control over
the PHY-layer, which allows to shape the signal to match the fingerprint of a
different device.

Choice of learning models: Besides the MLP, SVM, and CNN learning mod-
els discussed in this chapter, many other models could have been considered for
fingerprinting. Similarly, different hyperparameters, e.g. number of hidden lay-
ers, dropout probability, number of neurons, etc. could have been selected. We
considered the examination of optimal architectural choices for the models out
of the scope of this work. Nevertheless, we believe this would be an interest-
ing and useful subject for future work, that can further increase the accuracy of
PHY-layer fingerprinting systems.

6Assuming a majority vote is performed on all classified symbols in order to determine the
transmitter of the entire message.
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8.5 Related work

In the literature, there are mainly two types of identification techniques currently
being used for RF fingerprinting: (i) those based on extracting features from the
signal’s transient and (ii) those based on extracting features from the modulated
signal. In practice, most previous works consider features extracted using both
techniques.

Ureten et al. proposed to extract the envelope of the instantaneous amplitude
of 8 WiFi devices [262]. Subsequently, they were able to classify these signals
with an error rate of 2% by using a Probabilistic Neural Network (PNN). How-
ever, they focused only on distinguishing classes of devices, and used sophisti-
cated equipment with higher sampling rates compared to those used in our work.
Rehman et al. developed a transient-based technique for fingerprinting Bluetooth
devices both from the same and different vendors [210]. They performed their
experiments with 7 Bluetooth transmitters and a sampling rate that varies from
32 Msps to 4 Gsps. Although they achieved slightly better accuracy compared to
our work, they used fewer devices, a sampling rate 16 times higher and performed
their experiments inside an anechoic chamber, which makes their study less re-
alistic in practice. Remley et al. analysed the feasibility of fingerprinting 802.11
devices by extracting time- and frequency-domain features from 6 devices that
belong to 3 different vendors [212]. However, similarly to the work by Rehman
et al. [210], they conducted all these experiments in a controlled environment
(anechoic chamber) to minimize interference and noise, and used a higher sam-
pling rate. Brik et al. proposed PARADIS, a system to fingerprint 802.11 devices
based on errors in the modulated frame. They evaluated their system by col-
lecting frames from 130 devices from the same manufacturer and using them to
train an SVM and a kNN classifier. As a result of these experiments, they show
that it is possible to distinguish these devices with an accuracy of 99% [38]. The
main limitations of this system are that it uses sophisticated equipment with a
high sampling rate for capturing the signals, and that it uses modulation-specific
features which means the fingerprinting process can not be applied directly in
other modulation schemes. Han et al. proposed a technique called Geneprint,
which identifies Ultra High Frequency (UHF) RFID devices with an accuracy of
99.68%. Geneprint makes use of features extracted from the signal’s preamble
using a USRP and a sampling rate of 10 Msps. Ramsey et al. introduced a tech-
nique to fingerprint IEEE 802.15.4 devices based on a combination of features
extracted from their signal’s preamble. This includes the variance, skewness, kur-
tosis of the instantaneous phase, frequency and amplitude [205, 206]. In [206],
they also demonstrated how the fingerprinting can be done with a USRP and
PXIe-1085 with a relatively low sampling rate that varies from 5 to 20 Msps.
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Their classifier implements a multiple discriminant analysis/maximum likelihood
(MDA/ML) process in Matlab. The accuracy was reported as 100% in high SNR
conditions. However, their experiments involved at most 6 devices. The previous
two works are the closest to ours in terms of the selection of the sampling rate.
However, they extract features only from the preamble, which may facilitate im-
personation attacks as explained in Section 8.4. In this work we are the first to
fingerprint LoRa devices on the PHY layer, by extracting features from a single
symbol.

8.6 Chapter conclusions

In light of RG2, this chapter demonstrates an automated supervised classifi-
cation approach for PHY-layer fingerprinting that can distinguish LoRa devices
by analyzing their RF signals. Our classifier achieves 59%–99% accuracy when
fingerprinting identical chipsets, and 99%-100% accuracy when fingerprinting dif-
ferent chipset models. We extended the classifier with zero-shot learning methods
to recognize previously unseen classes and achieve 65%–88% accuracy for those
classes under similar channel conditions. Our results show that an adversary can
identify a transmitter independently of the used modulation scheme or crypto-
graphic mechanisms being used in the higher layers. This can be exploited by an
adversary to for example track devices.
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Figure 8.3.1: Mean instantaneous unwrapped phase (a) and magnitude of the FFT trans-
form (b) of LoRa symbols transmitted by each device. Minor CFO errors can be identified
between devices with identical radio chips, whereas large differences are displayed between
distinct radio chip models.
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Figure 8.3.2: 2D t-SNE visualization of the output feature weights learned by the MLP
model given dataset III. Each point represents a LoRa symbol, where the fill color indicates
the true value and the outline color represents the predicted value.
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9.1 Introduction

Thus far in this thesis, we have only considered explicit information leakage
in protocols and implicit information leakage from the PHY-layer radio trans-
missions of a wireless device. Another source of implicit information leakage
originates from computation-dependent changes in the physical properties of a
device’s hardware that occur during the execution of a protocol implementation.
Such leakage is called “side-channel leakage” (see Chapter 2). If present, mea-
surements of physical properties can be statistically analyzed in order to infer
information about the performed computation. This practice is referred to as
SCA in the literature.

Previous SCA research has shown that secret information of a vulnerable cryp-
tosystem can be exfiltrated through various types of side channels, including
power consumption [137], temperature [39, 123], acoustic [16, 95, 238], and EM
side channels [89, 93, 94, 97, 174, 175, 201, 204, 272]. Implicit information leak-
age through side channels is especially concerning in context of IoT devices and
WSNs, since an adversary can more readily gain physical access to devices de-
ployed in the field in order to perform side-channel measurements. The EM side
channel is particularly interesting from the perspective of an adversary, for a
number of reasons. First, EM waves can be captured without requiring physical
contact with the hardware [174, 186]. This is in contrast to power consumption
analysis, where the device under attack must typically be modified to obtain
accurate measurements [261]. Second, EM leakage can originate from various
components of a circuit due to coupling effects and circuit geometry [8, 170, 174]
and is therefore hard to mitigate completely. Third, EM waves can potentially
travel long distances, depending on the power and wavelength of the leakage sig-
nal. For example, Vuagnoux and Pasini demonstrated that EM emanations of
PS/2 keyboards can be captured at a distance of up to 20 meters, even through
walls [272]. Another example can be found in the work of Guri et al., where the
invocation of specific memory-related instructions was used to transfer data via
the resulting EM leakage, over a distance of up to 30 meters [114]. For these rea-
sons, we will exclusively focus on the EM side channel in this chapter, although
the concepts described could be applied to other side channels as well.

A known methodology to perform an EM-based side-channel attack on a de-
vice is Correlation Electromagnetic Analysis (CEMA) [73], which is based on
the CPA attack for power side channels introduced by Brier et al. in [37]. In a
CEMA attack, the adversary assumes that the power consumption of the hard-
ware is related to the Hamming distance or Hamming weight leakage model.
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Since consuming power produces electromagnetic radiation [137], the resulting
EM emissions can be captured by an adversary and correlated with the leakage
model in order to determine the secret information being processed.

Recall from Section 2.5.3 that in template or profiling attacks on the other hand,
the adversary makes no preliminary assumption about the leakage model [186].
Instead, the adversary is assumed to be in possession of a “training” device iden-
tical to the device being attacked [49]. The attack is then performed in a two-
phase process. In the training phase, the adversary estimates the probability
distribution of the secret information in function of the measured EM leakage
of the training device. Then, in the attack phase, the EM leakage of the de-
vice under attack is matched with the most probable template from the training
phase [49, 201].

Recently, several works have indicated that profiling attacks can be interpreted
as classification problems in the domains of ML and DL [41, 121, 152, 159, 195].
In this chapter, we introduce a novel profiling attack that, unlike these previous
approaches, does not rely on classification for determining the secret key. More
specifically, we do not directly classify individual EM traces into secret-key, in-
termediate, or Hamming values, but rather learn an encoding1 of the EM traces
that maximizes the Pearson correlation with the correct secret key. To this end,
we introduce the “correlation loss function”, which allows us to optimize the
encodings for use in a CEMA attack using conventional ML optimization algo-
rithms such as gradient descent. Furthermore, we show that our approach can
be applied in the frequency domain, which removes the requirement of aligning
the EM traces [93, 94, 174, 261]. We evaluate our methodology both on the AS-
CAD dataset [201], which features traces of masked AES operations, as well as
a custom dataset, which is comprised of unprotected AES operations performed
by an Arduino Duemilanove with an ATmega 328 CPU. We focus on information
leakage during the execution of AES specifically, since AES is the default cipher
used in WPA2, LoRa and many other wireless specifications. The EM traces of
the custom dataset were recorded using a SDR and commodity EM probe, which
shows that our approach can be used to perform a CEMA even with low-cost EM
measurement hardware.

The structure of this chapter is as follows: in Section 9.2, we will first discuss
a number of concepts that are necessary for understanding the remainder of the
chapter. Section 9.3 then describes our “Correlation Optimization” technique,
which is the main contribution of this work (C9). In this section, the technique

1Encodings are widely used for applications such as face verification and face recogni-
tion [232]. Some works in the machine learning literature refer to encodings as “embeddings”.
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will also be discussed and evaluated on both the ASCAD dataset, as well as
the custom dataset. Related works are described in Section 9.4, followed by our
conclusions in Section 9.5.

9.2 Background

9.2.1 Notation and terminology

In both the SCA and ML literature, the notational conventions and terminology
vary depending on the authors of the work. Furthermore, some of the notations
used in these domains overlap. As a concrete example, the output of the Hamming
Weight (HW) power consumption model in the work of Brier et al. is denoted
as W [37], which is also a common notation for the weight matrix in the ML
domain. In the interest of avoiding ambiguities, we will now specify the notations
and terminology used in this chapter.

We define a dataset as a collection of traces, where a trace is equivalent to a
capture or measurement of the EM signal generated during one execution of
an algorithm. Each trace consists of a number of samples of the instantaneous
amplitude of the EM signal. A training example is a single trace that is used as
the input to a ML model during its training phase. In this context, the samples
of a trace (or a transformation thereof) are the features or inputs to the model.
The labels or classes are then the outputs of the model. In this work, we will
often refer to the outputs of the model for a given input trace as the encodings
of that trace.

For ML-related concepts, we use the Stanford notation as detailed in Section 3.1.
A recapitulation of all variables and notations used in this work can be found in
Table 9.2.1.

9.2.2 Advanced Encryption Standard

The AES cipher is widely used for providing confidentiality and integrity in pro-
tocols such as Wi-Fi (802.11) [127], Bluetooth [30], TLS [80], and many oth-
ers. The cipher has been extensively studied in previous works. For a detailed
overview of the inner workings of AES, we refer the reader to the design docu-
ment of AES [66]. This work focuses exclusively on side-channel attacks against
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Table 9.2.1: Overview of the notations used in this chapter.

Symbol Description Sym. Description

α Scaling factor. nb Number of bits.
A[l] Activations matrix of layer l. nl Number of layers.

b Bias tensor. nm Number of training examples.
D Current state. nx Number of features.
d Key byte guess score tensor. ϕ Encoding function.
ϵ Value of 10−15. p Plaintext tensor.
η Noise tensor. ρ Pearson correlation coefficient.
g Activation function. R Reference state.
H Hypothesis matrix. t Time unit.
h Tensor of model hypothesis values. v Intermediate value.
ht Power consumption model at time t. W [l] Weight matrix of layer l.

J(ŷ, y) Cost function. X Matrix of training examples.
k True key tensor. x

(i)
j Feature j of training example i.

k̂ Key guess tensor. Ŷ Matrix of model output values.
ks Byte s of k. Y Matrix of true values.

L(ŷ, y) Loss function. ŷ Model output values (encodings).
l Layer index. y True model output.

the first round of AES. In this round, the RoundKey is initialized to the secret key
k = {k1, k2, . . . , k16} [66]. We will henceforth refer to the elements of k as “key
bytes”. Given a plaintext p = {p1, p2, . . . p16}, the intermediate value v after the
SubBytes operation is equal to:

v = SBox(p⊕ k) (9.1)

Because the secret key k is processed directly during the first round of the ci-
pher, performing a side-channel attack is trivial. Several countermeasures have
been developed to increase the difficulty of successfully performing an attack. A
first countermeasure is called “masking”, which attempts to change the power
consumption characteristics of a device by randomizing the processed intermedi-
ate values [174]. An example of such an approach is the “table recomputation”
method [200].

A second commonly implemented countermeasure is “hiding”, which, as the name
implies attempts to hide the hardware power consumption characteristics from
an adversary. This can be done in a number of ways, for example by introducing
jitter to the clock of the device, introducing dummy instructions, adding random
interrupts, etc. [174].
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9.2.3 Correlation Electromagnetic Analysis of AES

The classic CPA technique, as first described in the work of Brier et al. [37],
utilizes the Hamming Distance (HD) to model the data leakage through a power
side channel. More specifically, the number of bits switching from an nb-bit
reference state R to another state D at a given time t is assumed to be linearly
related to the power consumption of the hardware [18, 174, 260, 261]. Formally,
we define this power consumption model h as follows: [37]

ht = αHW (Dt ⊕Rt) + ηt (9.2)

In the above equation, HW is the Hamming weight function, α is a scaling fac-
tor and ηt is a noise term at time t. Generally, α and η are unknown, and the
adversary’s goal is to recover Dt and Rt from ht. If the underlying hardware
implements pre-charged logic or if certain transitions are prohibited due to sepa-
rated busses for data and addresses, the reference state Rt can be systematically
equal to 0 [37, 181]. In this case, the HD model generalises to the HW model.

When applied to AES, a CEMA using the HW or HD model often targets the
output of the AddRoundKey and SubBytes operations in the first round of the
cipher, as the secret key is processed directly in this round [93, 159, 165, 174]. If
we plug the intermediate value from Equation 9.1 into the HW leakage model,
the EM leakage in function of the key and plaintext becomes:

ht = αHW (SBox(p⊕ k)) + ηt (9.3)

The adversary can now determine the value of ht by supplying a known plaintext
to the device under attack and analyzing traces of EM emanations captured
during the first AES round. Recall that we define a trace as an AM-demodulated
signal (i.e. a time series of signal magnitudes) captured using an oscilloscope or
signal analyzer, that characterizes the power consumption of the device over time.

In order to determine the unknown k given ht, the adversary can construct a
hypothesis power consumption matrix Hij = SBox(pi ⊕ j) for each key byte
index i ∈ {1, 2, . . . , 16} and each possible key value j ∈ {0, 1, . . . , 255}. This
matrix essentially gives all power consumption values ht for each possible key,
assuming α = 1 and η = 0. The adversary then calculates the Pearson correlation
coefficients between the observed values for ht from the captured EM traces and
the hypothesized values from H for each key guess [37, 175]. This process is
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repeated for each relevant time unit t, resulting in a three-dimensional correlation
matrix:

ρtij(ht,Hij) =
cov(ht,Hij)

σhtσHij

(9.4)

Finally, the best key guess k̂ is determined by selecting the key value with the
highest absolute value2 of the correlation:

k̂i = argmax
t,j

(|ρtij |) (9.5)

9.2.4 Machine Learning and Deep Learning attacks on AES

In ML and DL side-channel attacks, the objective of finding the secret key k
given a collection of traces is formulated as a supervised classification problem.
Analogous to the classic TAs, solving this problem involves two phases: a training
phase and testing phase.

In the training phase, a “training set” of EM traces is first collected from the
reference device. Here, each trace or “training example” is labeled with a corre-
sponding “class label”. The class label is what the algorithm will be trained to
predict and can be chosen in several ways. One possibility is to consider each
possible key byte value as a separate class, which yields 256 class labels. Another
possibility could be to consider the HW of each key byte value, resulting in only
9 class labels (all possible Hamming weight values of a single byte). The ML
algorithm is subsequently trained, which means that a model is parameterised
such that a certain predetermined loss function (e.g. the cross-entropy loss) is
minimized.

After training is complete, a “test set” of EM traces is collected from the targeted
device during the testing phase. Since the key bytes are unknown in this case,
only the EM traces are available. The ML algorithm will output the probability
of each EM trace belonging to a certain class, based on the parameters learned
by the model during the training phase. The accuracy of this prediction largely
depends on the quality of the training data, but also on the chosen type of ML

2The absolute value of the Pearson correlation is considered, since it does not matter whether
the correlation between the leakage and a certain key byte is positive or negative.
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model, hyperparameters, optimizer, and loss function. In this work, we will
primarily focus on simple ML models such as MLPs. We will show that even
such simple models outperform the state-of-the-art models from previous works
when using our approach, which will be detailed in Section 9.3.

9.2.5 The ASCAD dataset

The ASCAD dataset was introduced by Prouff et al. in [201] for the purpose of
providing a benchmark to evaluate ML and DL techniques in context of side-
channel attacks. The dataset consists of three separate HDF5 files: ASCAD.h5,
ASCAD_desync50.h5, and ASCAD_desync100.h5. Each file contains 60,000 EM
traces (50,000 training / cross-validation traces and 10,000 test traces) captured
with a sensor attached to an oscilloscope sampling at 2 GS/s. The traces contain
700 samples of the EM radiation emitted by an ATMega8515 device during the
execution of the first round of a software AES implementation. The AES im-
plementation is secured against first-order side-channel attacks with the masking
technique (see Section 9.2.2). Traces in the ASCAD.h5 file have been time-aligned
in a preprocessing step, whereas the traces in ASCAD_desync50.h5 and ASCAD_
desync100.h5 have been shifted with a maximum jitter window of respectively
50 and 100 samples [201]. Besides EM measurements, the ASCAD authors have
provided the source code of the models used in their work. In Section 9.3.6, we
will compare these models to our Correlation Optimization (CO) technique.

9.3 Correlation Optimization

When performing a CEMA attack as described in Section 9.2.3, recall that the
adversary constructs the matrix ρtij which gives the correlation coefficients of all
key byte hypotheses for each time unit in the trace. Then, the hypothesis with
the highest correlation to the power consumption traces is selected as the most
likely true key byte. Note that this correlation is determined by only one time
unit for each trace, i.e. the samples at other time units are discarded. However,
some of these discarded samples are correlated to the correct hypothesis, albeit
to a lesser degree.

This observation raises the question of how information from multiple samples can
be combined in order to improve the efficiency of CEMA. Since the leakage itself
depends on the input plaintext, key, and complex electromagnetic interactions
governed by Maxwell’s equations in the underlying hardware, the samples that
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contain useful information may not occur at the same time units over multiple
traces. Measurements are also noisy (due to interference and fading effects) and
highly dimensional (in terms of samples per trace), which complicates the issue
further. Although classic TAs consider multiple time units as well [49], they are
not suited for high-dimensional data [41, 152].

We now introduce our approach, called “Correlation Optimization”, which aims
to address the aforementioned issues by exploiting the information leakage from
multiple samples. To this end, we consider the selection of “good” samples as
a ML optimization problem. That is, given an input of trace samples x(i) =

{x(i)
1 . . . x

(i)
nx} ∈ X with i ∈ {1, 2, . . . nm}, we would like to determine which

encoding of samples ŷ(i) ∈ Ŷ can be obtained such that ρ(Ŷ , Y ) is maximal.
Here, the term encoding refers to an arbitrary function ϕ of the input features,
i.e.:

ŷ(i) = ϕ(x(i)) (9.6)

Observe that the above optimization problem aligns well with the problems from
domains such as face recognition and face verification, where the ML model
matches encodings of faces rather than predicting a class probability for each
face3 [232]. Since in these domains ML models achieve state-of-the-art perfor-
mance, we will apply similar techniques in our approach.

9.3.1 The correlation loss function

Recall that we would like to find an encoding of input samples ŷ = {ŷ(1), . . . , ŷ(nm)}
such that ρ(Ŷ , Y ) is maximal. To this end, a loss function must be defined that
can be evaluated by an optimizer algorithm in order to train the parameters of
our ML model. Ideally, this loss function should be large when there is no linear
correlation between Ŷ and Y , and zero when the correlation is maximal. For a
tensor of key bytes yk = {y(1)k , . . . , y

(nm)
k } at index k ∈ {1, 2, . . . nk} and the cor-

responding tensor of encodings ŷk = {ŷ(1)k , . . . , ŷ
(nm)
k }, we define the loss function

as:

3To understand why, note that when given a database of millions of faces, it would be
infeasible to train a model with a one-hot encoded class label assigned to each of the faces.
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L(ŷk, yk) = 1− cov(ŷk, yk)

σŷk
σyk

+ ϵ
(9.7)

=

∑nm

i=1[(ŷ
(i)
k − ŷk)(y

(i)
k − yk)]√∑nm

i=1(ŷ
(i)
k − ŷk)

2

√∑nm

i=1(y
(i)
k − yk)

2 + ϵ
(9.8)

Here, ϵ is a small value (e.g. 10−15) introduced to prevent division by zero. If we
assume that ŷk and yk are mean-normalized, Equation 9.8 can be converted to a
more convenient vector form:

L(ŷk, yk) = 1− ŷk · yk
∥ŷk∥ · ∥yk∥+ ϵ

(9.9)

In case we want to simultaneously train the ML model for all values of k, a cost
function4 can be defined as follows:

J(ŷ, y) =

nk∑
k=1

L(ŷk, yk) (9.10)

Observe that the maximum value of the cost function J is 32 in the worst case
(when all correlations are −1), and 0 in the best case (when all correlations are
1).

9.3.2 Evaluation methodology

For the evaluation of our CO technique, we will use the same methodology as
Prouff et al., so that an objective comparison can be made. As such, our ML
models will be trained to attack the third key byte of the masked AES im-
plementation from the ASCAD database (see Section 9.2.5 for a description of
this dataset). The implementation of these models was written in Python, us-
ing the library “Keras” [53] with a Tensorflow backend [3]. All source code,
scripts, and data used to generate the figures is available on Github at https:

4In some ML papers, a loss function defines the cost for a single training example, whereas
the cost function defines the total cost. In this work, we define the cost function as the total
cost for all bytes of the AES key instead of all training examples.

https://github.com/rpp0/correlation-optimization-paper
https://github.com/rpp0/correlation-optimization-paper
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//github.com/rpp0/correlation-optimization-paper.

t-fold cross-validation

Unless specified otherwise, each ML model was evaluated with a 10-fold cross
validation, using a train and test split of respectively 45,000 and 5,000 traces.
Hence, we first train a model from scratch with 45,000 random traces, and eval-
uate the performance of this newly trained model on 5,000 different (unseen)
traces. This process is repeated 10 times, and finally the performance metrics
are averaged to obtain a conclusion.

Performance metrics

In each of our experiments, we use two metrics to assess the performance of our
models: “rank” and “confidence”. Here, we define the “rank” as the index of the
correct key in a tensor d that contains the scores assigned to a key byte ks by the
model, sorted such that di ≥ dj ∀ i, j ∈ {1, 2, . . . , 256} | i < j. For example, the
score tensor can contain key byte probabilities or correlations. More formally, we
define the rank as:

rank(d) = {i− 1|di = score(ks)} (9.11)

Note that the lowest possible rank is 0. If we employ an optimal guessing strategy
by iteratively guessing the key byte with the next highest score in d, the rank
plus one corresponds to the number of guesses required to find the correct key.
The expected number of key guesses is called the GE, and is commonly used to
evaluate SCA methods [140, 181, 213, 253]:

GE =

K∑
i=1

iP (rank(d) = i− 1) (9.12)

We obtain the expected value of the number of key guesses by averaging the rank
over the 10 folds of the ML model, which we will denote as the “mean rank”
in the coming figures. The “confidence” is then defined as the score difference
between rank 0 and rank 1 or equivalently, as the distance between the maximum
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score in d and the next highest score in d [175]:

confidence(d) = d1 − d2 (9.13)

Analogous to the rank, we average the confidence over all 10 folds to obtain the
“mean confidence”. Although this metric is less frequently used in related works,
we believe it is useful because it gives an insight into how well the model can
distinguish a singular key byte guess.

Input and label preprocessing

The inputs and labels to the ML models are preprocessed during the training
phase. First, all traces are split into mini-batches of 512 traces before being fed
to the network. This removes the requirement of having to load the entire dataset
in memory, at the cost of decreased performance since multiple iterations are now
needed to process the entire training set. Note that if the mini-batch size is too
small, its correlation loss might not be representative for the entire training set,
and it may fail to converge as a result. We empirically determined 512 traces to
be a good value for the mini-batch size for the ASCAD dataset.

Second, the true labels y are preprocessed such that y
(i)
s = HW (SBox(p

(i)
s ⊕

k
(i)
s )), where s is the key byte index and i is the training example index. It is

important to note that we do not supply the variable AES masking values during
the training phase: an encoding that correlates the EM radiation directly with the
corresponding key byte will automatically be learned by the model. Further, as we
will discuss in Section 9.3.4, assuming the Hamming Weight power consumption
model is not necessary, but will reduce the required training time and complexity
of the model architecture. Finally, the training example input features x(i) are
simply equivalent to the raw samples of trace i, unless specified otherwise.

9.3.3 Time-domain CO

Using the correlation loss function defined in Section 9.3.1, an encoding function
ϕ that maximizes Equation 9.4 can be learned by the ML model. In this section,
we will discuss the performance of the encoding function if we use time domain
samples as its input features. To this end, we first train the ML model for 100
epochs on the three ASCAD datasets. Then, we generate the encodings for each
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Figure 9.3.1: Mean rank based on a 10-fold cross-validation of the time-domain CO identity
encoding function in relation to the number of validation traces used for a CEMA attack.
The CEMA attack is unsuccessful even if all 60,000 traces are utilized, and the confidence
in the guessed key bytes is low, ranging from 0.001 to 0.005.

of the traces using the trained model, and perform a CEMA attack on these
encodings.

Identity function

In order to establish a performance base line, we first consider the case where ϕ is
the identity function, i.e. ŷ = {x1, x2, . . . , xm}. This is equivalent to performing
a regular CEMA attack on the EM traces as described in Section 9.2.3. Since
there are no weights or other parameters to learn, we use all 60,000 available
traces for the evaluation of the model. The results of this evaluation are shown
in Figure 9.3.1.

As expected, the standard CEMA attack is not successful in guessing the true
key due to the masking countermeasure that was implemented (see Section 9.2.2).
Although the mean rank does seem to decrease slightly for ASCAD_desync50 and
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ŷ2
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ŷ16

ŷ3
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Figure 9.3.2: The single-layer (a) and two-layer (b) MLP architectures used in our work
for CO. Only connections to the output for key byte 3 (y3) are shown for clarity.

ASCAD_desync100 when more traces are considered, note that the confidence is
low for each dataset. This indicates there is no clear difference between the best
key guess and the second best key guess, and that more traces would therefore
be needed to obtain a reliable result.

Single-layer MLP

When using a single-layer MLP architecture for CO, we essentially let the learning
algorithm determine a linear combination of time-domain samples that, when
passed through a nonlinear activation function, results in a maximal correlation
with the correct key for the entire training set. The output of the MLP is:

Ŷ = g(XW + b) (9.14)

The architecture is visualized in Figure 9.3.2 (a). In practice, we add a batch
normalization layer before the activation function to speed up the learning algo-
rithm [129]. As the activation function, we chose the leaky ReLU activation in
order to mitigate the occurrence of zero-gradients [158].

Note that the CEMA attack will be performed on a single output encoding sam-
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Figure 9.3.3: Mean rank based on a 10-fold cross-validation of the time-domain single-layer
MLP CO model in relation to the number of validation traces used for a CEMA attack.
Compared to the identity function, an improvement can be observed for the ASCAD dataset:
a minimum mean rank of 1 is obtained after 4,960 traces. However, the mean confidence
in the guessed key bytes is still low, ranging from 0.003 to 0.005. For the desynchronized
datasets, no improvement is observed.

ple, determined by the parameters learned by ML model. The mean rank and
the confidence after training on 45,000 traces for 100 epochs and evaluating on a
validation set of 5,000 different traces is shown in Figure 9.3.3.

Clearly, the model has learned an improvement over the identity function: a mean
rank of 1 is achieved after 4,960 traces even though we used only 5,000 traces for
the CEMA attack instead of 60,000. It should be noted that a mean rank of 0
can be achieved if more traces were to be added to the validation set, though we
only show the first 5,000 traces for a fair comparison with the other experiments
and related works.
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Figure 9.3.4: Mean rank based on a 10-fold cross-validation of the time-domain two-layer
MLP CO model in relation to the number of validation traces used for a CEMA attack. The
CEMA attack successfully finds the correct key for the ASCAD dataset after 800 traces with
a mean confidence of 0.038, which rises further to 0.10 as more samples are included in the
validation set. However, the attack fails on the desynchronized datasets ASCAD_desync50
and ASCAD_desync100.

Two-layer MLP

Although single-layer MLPs are intuitive in the sense that they essentially learn
a single weight for each sample in a trace, they do not allow for learning complex
encoding functions. Ideally, we would like to learn dependencies between samples
as well. To achieve this, a more complex architecture can be used, such as an
MLP with a hidden layer as shown in Figure 9.3.2 (b). The output of the model
then becomes:

Ŷ = g(g(XW [0] + b[0])W [1] + b[1]) (9.15)

Again, we add batch normalization layers to speed up training and perform a
CEMA attack on the encodings of 5,000 traces after training on 45,000 traces.
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The result is shown in Figure 9.3.4. With this model, we obtain a very encour-
aging result for the ASCAD dataset: the model has learned to defeat the masked
implementation of AES and requires only around 1,000 traces to achieve a mean
rank of 0. Furthermore, the confidence after 5,000 traces is an order of magnitude
higher compared to the single-layer MLP.

Unfortunately, for the ASCAD_desync50 and ASCAD_desync100 dataset, the model
is not able to learn a meaningful encoding. This is to be expected, as MLPs are
very sensitive to translations of the input features [150]. Introducing deliber-
ate clock jitter to the hardware of a device running AES would therefore be an
effective countermeasure against time-domain CO.

9.3.4 Frequency-domain CO

As evidenced in Section 9.3.3, shifting traces in time to cause misalignment can
be an effective mitigation against CEMA attacks. Cagli et al. discuss several
methods to mitigate the issue of misalignment in their work: increasing the
number of side-channel acquisitions, applying realignment techniques, and using
CNNs [41]. However, another possibility is to consider traces in the frequency
domain [93, 94, 174], as first proposed for Differential Electromagnetic Analysis
(DEMA) attacks by Tiu in [261]. Inspired by this approach, we studied the
effectiveness of CO in the frequency domain. To this end, we first preprocess
each of the traces by applying a 700-point FFT and taking the magnitude of the
result, discarding the phase information.

Identity function

Similarly to our approach for the time-domain CO, we first consider the case
where ϕ is the identity function in order to establish a baseline for frequency-
domain CO. Thus, we have ŷ = abs(FFT ({x1, x2, . . . , xm})) as the output of the
model for a single training example.

The result of performing a CEMA attack on all 60,000 traces is shown in Fig-
ure 9.3.5. Here, the mean rank is better compared to the time-domain CO identity
function experiment: the mean rank for ASCAD_desync100 reaches zero at 51,000
traces. This indicates that there is a single frequency component that, when anal-
ysed, allows us to defeat the masked AES implementation without CO. However,
the confidence for each dataset is still low, and many traces are required for the
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Figure 9.3.5: Mean rank based on a 10-fold cross-validation of the frequency-domain CO
identity encoding function in relation to the number of validation traces used for a CEMA at-
tack. The CEMA attack successfully finds the correct key for the ASCAD_desync100 dataset
after 51,000 traces, but the mean confidence is low (0.003). The attack is unsuccessful for
the other datasets.

CEMA attack to succeed.

Single-layer MLP

Next, we consider linear combinations of the FFT frequency bins passed through
an activation function. We use the same encoding function ϕ as for the time-
domain single-layer MLP model from Section 9.3.3. Figure 9.3.6 shows the mean
rank and the confidence of a CEMA attack on the encodings of 5,000 traces, after
training on 45,000 traces for 100 epochs.

The improvement over the identity function is similar to what we observed for
time-domain CO: only 4,840 traces are required to obtain a mean rank of 0, with
a mean confidence of 0.008.
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Figure 9.3.6: Mean rank based on a 10-fold cross-validation of the frequency-domain single-
layer MLP CO model in relation to the number of validation traces used for a CEMA attack.
Again, an improvement compared to the identity function can be observed: a mean rank
of 0 is obtained for the ASCAD dataset after only 4,840 traces, with a mean confidence of
0.008. The attack is unsuccessful on the other datasets.

Two-layer MLP

Using an MLP with a hidden layer allows the model to learn more complex
relationships between frequency bins of the FFT. Again, we use the same encoding
function ϕ as in Section 9.3.3. The result after evaluation of the model is shown
in Figure 9.3.7. Observe that the model is now successfully able to learn a
meaningful encoding function for all of the ASCAD datasets. After approximately
1,000 traces, a mean rank of 0 is achieved by each model. Furthermore, if we
increase the number of traces, the mean confidence in the key guess increases as
well. We believe this is a very encouraging result, showing that CO can be used
to defeat both the masked AES and clock jitter countermeasures.
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Figure 9.3.7: Mean rank based on a 10-fold cross-validation of the frequency-domain two-
layer MLP CO model in relation to the number of validation traces used for a CEMA attack.
The correct key is guessed for each dataset after approximately 1,000 traces. Adding more
traces to the validation set further increases the mean confidence to 0.099, 0.092, and 0.066
for respectively the ASCAD, ASCAD_desync50 and ASCAD_desync100 datasets.

No model assumption

As indicated in Section 9.3.2, the true labels y(1), y(2), . . . , y(nx) are preprocessed
such that their key byte values correspond to HW(SBox(p(i)s ⊕ k

(i)
s )). Hence,

we assume that the cryptographic device leaks information based on the HW
power consumption model. In the following experiment, we determine whether
the power consumption model can be learned implicitly by the optimization al-
gorithm. To this end, we label y(i)s = SBox(p(i)s ⊕ k

(i)
s ) so that the label values

correspond to the intermediate value after the processing of the SBox. Then,
we perform CO with the frequency-domain two-layer MLP model on the ASCAD_
desync100 dataset. The results are shown in Figure 9.3.8.

Compared to when a HW model was assumed (see Section 9.3.4), the correct
key is guessed around 1,200 traces instead of 1,000 traces. Furthermore, the
confidence is slightly lower, with 0.045 compared to 0.066. We conjecture that
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Figure 9.3.8: Rank and confidence of the frequency-domain two-layer MLP CO model in
relation to the number of validation traces used for a CEMA attack. The power consumption
model is not assumed; it is learned by the model. The correct key for the ASCAD_desync100
dataset is guessed after approximately 1,200 traces with a confidence of 0.001, and increases
further to 0.045 after 5,000 traces.

this slight decrease in performance is caused by the added complexity of learning
the HW function.

9.3.5 Low-cost CEMA

The ASCAD dataset was recorded using an expensive oscilloscope and a sam-
ple rate of 2 GS/s. Since the frequency-domain CO from Section 9.3.4 showed
promising results for noisy and unaligned data, we also investigated the effec-
tiveness of the technique when using lower-cost hardware such as an SDR. To
this end, we recorded a custom dataset of EM traces transmitted by an Arduino
Duemilanove running a software AES implementation, using a Universal Soft-
ware Radio Peripheral (USRP) B200 SDR sampling at 8 MS/s on the 64 MHz
band with a TBPS01 EM probe and wideband amplifier. The experimental setup
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Figure 9.3.9: Experimental test setup for the low-cost CEMA attack. A Tekbox TBPS01
EM probe is positioned near the VCC pin of the ATmega 328, and is connected to the USRP
B200 SDR through a 40 dB wideband amplifier.

is shown in Figure 9.3.9.

Dataset properties

The custom dataset consists of two sets of traces: a training set of 51,200 traces
and validation set of 32,768 traces. Each trace contains the instantaneous ampli-
tude of the I/Q signal provided by the SDR. No further preprocessing was per-
formed. While recording the training set, the Arduino continuously performed
AES encryption with a random key, such that one trace contains the EM leakage
of one random encryption operation. The validation set contains EM traces of
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AES encryptions performed with a fixed key. This ensures that the ML model
will not overfit on one specific key during training, and that a sufficient number
of traces is available to perform a CEMA attack during validation. We stress
that the fixed key used during the validation step is never encountered during
training.

CO results

At first, we directly used the MLP architecture from Section 9.3.4 to train the
model on the 51,200 random-key training examples. This approach turned out
to be unsuccessful: the model heavily overfits on the noise that is present in the
training examples after each subsequent epoch, and does not learn a generalizable
relation between the key byte value and EM leakage. As a result, the training
set loss is very low, whereas the validation set loss is high.

In order to resolve this issue, we artificially generated more training data by
applying the data augmentation technique. More specifically, for each of the
training examples, we set the starting offset of the sample window for which the
FFT is calculated to a random offset between 0 and 500 time units. Indeed, with
this approach, a training example will be time-shifted slightly differently for each
epoch, which reduces the overfitting of the MLP model. The result after training
for 100 epochs on the augmented training set is shown in Figure 9.3.10.

Observe that after 22,000 traces, the CEMA attack successfully determines the
correct key, without performing any alignment or filtering of the EM traces and
with a SDR sample rate of only 8 MS/s.

9.3.6 Discussion

Comparison to previous approaches

Previous works in context of applying ML to SCA have in common that they all
use a model optimized by minimizing the mean cross-entropy loss over the train-
ing set. Thus, for each training example, the probability distribution P (ŷ(i) =
v | x(i)) is calculated for each intermediate value v ∈ {0, 1, . . . 255} and its cross-
entropy with the one-hot encoding of the true intermediate value y(i) is deter-
mined. Intuitively, this can be regarded as a SEMA attack on a single trace,
since no information from other traces is used.
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Figure 9.3.10: Rank and confidence for a single model trained on the custom dataset, after
performing a CEMA attack on its encodings. The correct key is found after 22,000 traces.

Although the above approach has been demonstrated to achieve reasonable results
in context of SCA, we believe it is more suited to image classification applications,
where only one image is often available that needs to be classified. In SCA, there
is the need for extracting information from multiple examples, due to the noisy
nature of EM traces. CO achieves this by optimizing the correlation coefficient
of a mini-batch with the true key byte value. This may explain why even a
simple two-layer MLP architecture performs better than the best_cnn model
from the ASCAD paper; their CNN is unable to determine the correct key for
the ASCAD_desync100 dataset (see [201, p. 39]). We confirmed this result by
retraining their best_cnn model for 100 epochs and performing a 10-fold cross-
validation with the ASCAD datasets, analogous to the experiments previously
discussed in Sections 9.3.3 and 9.3.4. The results of this experiment are shown
in Figure 9.3.11.
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Figure 9.3.11: Mean rank based on a 10-fold cross-validation of the best_cnn model from
the work of Prouff et al. [201], in relation to the number of validation traces used for a
classification attack. Their model is able to determine the correct key for the ASCAD dataset
after 1,910 traces, but performs poorly on the ASCAD_desync50 and ASCAD_desync100
datasets compared to our best CO models.

Complexity

The most complex model we considered is the two-layer MLP model from Sec-
tion 9.3.4. This model contains 180,741 parameters and took 271 seconds to train
for 100 epochs on a Dell Latitude laptop with quad-core Intel Core i5-7300U CPU
at 2.60 GHz (no GPU). By comparison, the ASCAD best_cnn model contains
66,652,544 parameters. In addition, the presence of convolutional layers further
increases the complexity of this model. As a result, training the ASCAD CNN
models for 100 epochs with this architecture takes 5.21 days per model on the
same machine.
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Hybrid CO and round detection

In our custom dataset containing the Arduino EM traces, each trace contains
a variable number of samples, and the only assertion is that precisely one AES
encryption is performed within the trace. In Section 9.3.5, we demonstrated that
it is not required to align the traces in a preprocessing step due to the frequency-
domain approach. The only requirement is that the first round of the AES
encryption is contained within the FFT window. However, the larger the FFT
window, the more irrelevant information will be included in the power spectrum
and hence, the more traces are required to successfully perform a CEMA attack.
This raises the question of how the FFT window can be optimally selected.

We did not consider the optimal selection of FFT windows in this work, but
leave a number of interesting pointers for future work. A first possible approach
is to let the neural network determine a boundary of where the first AES round
starts. This could be achieved with an algorithm such as YOLO [209], which
automatically determines bounding boxes of certain objects (in this case an AES
round). A second approach could be to perform a “hybrid” CO that takes place
both in the time domain as well as the frequency domain. For example, by
calculating a spectogram with overlapping FFT windows of the entire trace and
finding the spectogram section with the highest correlation or by using wavelet
transforms.

9.4 Related work

The first study of using ML in SCA was conducted by Hospodar et al. in 2011,
where a power analysis of a software AES implementation without countermea-
sures was performed using a SVM [121]. In 2015, Lerman et al. compared ML
techniques with the classic TA and show that ML are especially interesting when
the number of useless samples in a leakage trace increases and/or when the train-
ing set size is small. Maghrebi et al. apply DL techniques in side-channel context,
and show that DL-based attacks are more efficient than ML-based and template
attacks [159]. This observation was recently nuanced by Picek et al. who suggest
that ML techniques can perform on a similar level or even outperform DL tech-
niques depending on the level of noise, number of measurements and number of
features [195]. Cagli et al. studied the robustness to misalignment of CNNs for an
unmasked AES implementation [41]. A comprehensive study regarding the ap-
plication of DL algorithms in context of EM side-channel attacks was conducted
by Prouff et al. in [201]. They also introduced the ASCAD benchmark database,
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which was used in extensively Section 9.3 to evaluate our approach.

The use of frequency-domain features in SCA was pioneered by Tiu et al. in
2005 [261]. A similar technique was used in context of CPA in [229] to mitigate
misalignment problems. Barenghi et al. performed CEMA attacks on intervals
of the FFT bins of the trace in order to determine leaking frequencies [18]. This
technique was further extended and explored in context of performing SCA us-
ing SDRs by Montminy et al. [175]. Other techniques to find the most leaking
frequencies are investigated in [170, 260].

9.5 Chapter conclusions

We introduced a novel approach to improve CEMA attacks, called Correlation
Optimization (CO). In this approach, a ML model is trained to learn “encodings”
of a set of EM traces, which are subsequently used in a CEMA attack. These
encodings are optimized such that their Pearson correlation with the secret key is
maximal, by minimizing the correlation loss function defined in this chapter. This
is in contrast to previous works, where models are trained to classify individual
EM traces into secret-key byte, intermediate, or Hamming values by optimizing
the mean cross-entropy of the class probabilities.

The identity function (regular CEMA attack), one-layer and two-layer MLP mod-
els that we considered in this work were evaluated on the ASCAD benchmark
datasets for SCA [201] in both the time and frequency domain. Our best model,
the frequency-domain two-layer MLP, is on average able to find the correct key
byte after considering 1,000 traces from the ASCAD, ASCAD_desync50, and ASCAD_
desync100 datasets. We believe this is a significant improvement over the work
of Prouff et al., where TA attacks, their “MLP best” model and “CNN best”
model all failed to find the correct key byte for the ASCAD_desync100 dataset
after considering 5,000 traces. As such, this work contributes to RG2 of this
thesis.

In addition to evaluating our models on the ASCAD datasets, we examined their
performance on a custom dataset as well. The custom dataset contains un-
protected AES EM leakage traces of an Arduino Duemilanove recorded with
a USRP B200 SDR sampling at 8 MS/s on the 64 MHz band. Even though
the traces are highly dimensional and noisy, our frequency-domain two-layer
MLP model is able to find the correct key after 22,000 traces, without requir-
ing prior trace alignment. Finally, in consideration of RG3 and in order to
allow for reproducing the results that were presented in this chapter, all used
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datasets and code have been published to Github at the following location:
https://github.com/rpp0/correlation-optimization-paper.

https://github.com/rpp0/correlation-optimization-paper
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Absolutely secure systems do not exist.
Adi Shamir

10
Conclusions

In this thesis, we defined and examined two types of information leakage in
context of wireless communication: explicit and implicit information leakage.
The former type pertains to information leakage that occurs as a result of design
or implementation flaws in a protocol, whereas the latter is related to information
leakage that stems from measurable side effects occurring during the execution
of a specific protocol implementation.

As a first example of explicit information leakage, we revealed a vulnerability
in the LEAP and PEAP protocols used in “WPA2-Enterprise” Wi-Fi networks,
covering RG1. This vulnerability allows a proximal adversary to authenticate
as a legitimate user without knowing the credentials of this user, by establishing
a MITM position and performing a LEAP challenge to the mobile device while
simultaneously initiating a PEAP protocol with the AS. We showed that the re-
sulting LEAP MSCHAPv1 challenge response can be reused as a MSCHAPv2
challenge response in the PEAP protocol. Moreover, we showed that the adver-
sary can even participate in regular communication with the AP, since the session
keys are derived from the TLS master secret. In light of RG2, we developed a
PoC tool and showed that all Apple devices prior to OS X Yosemite, Apple TV
7 and iOS 8 were vulnerable to the attack1. To achieve RG3, the vulnerability

1See the security advisories at respectively https://support.apple.com/en-us/HT203112,

https://support.apple.com/en-us/HT203112
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was reported to Apple through a responsible disclosure procedure, allowing them
to fix the issue in subsequent releases of OS X and iOS (see CVE-2014-4364). In
addition, we proposed 5 mitigation strategies that can be implemented by net-
work administrators and users themselves. Apple mitigated the issue by disabling
LEAP by default in future releases.

After a further examination of the 802.11n and later Wi-Fi standards, we also
discovered a vulnerability in the way frame aggregation is handled, allowing an
adversary to leak payload data to the headers and lower layers of the OSI model
(RG1). The vulnerability is caused by the A-MPDU parsing algorithm detailed
in [127] and can be exploited similarly to the PHY-layer PIP attack introduced
by Goodspeed et al. in 2011 (see [105]): the adversary crafts a payload containing
valid MAC-layer Wi-Fi frames, including 4-byte A-MPDU delimiter headers, and
embeds this payload into any application-layer data. When the A-MPDU header
of frames containing such a payload has been damaged while in transit to the
receiver (for example due to frame collisions), the A-MPDU parsing algorithm
will overflow into the payload data of the application layer and parse the Wi-
Fi frame crafted by the adversary instead of the original frame created by the
AP. We created an open source PoC to test for this attack (RG2). Next, we
investigated the impact of frame size on the aggregation probability and proposed
a simple linear model to predict the number of successful frame injections per sent
A-MPDU, based on the aggregation probability and frame corruption probability.
Lastly, we proposed 6 mitigations to this attack for network administrators and
vendors, and compared them in terms of requirements and costs (RG3).

Given the rising use of smartphones, Wi-Fi and wireless communication in general
as highlighted in the introduction of this thesis, it is furthermore important to
consider the privacy of the user as well. We therefore explored whether the MAC
address randomization algorithms as implemented by smartphone vendors are
sufficient to prevent involuntary location tracking by third parties (RG2). To do
so, we first introduced two metrics based on information entropy: the variability
and stability of a fingerprint. These metrics allow to identify, for each bit in a
802.11 frame, the suitability of this bit for use in a per-device fingerprint (RG1).
The uniqueness of resulting fingerprints was evaluated in a practical experiment
where 8 MSs were deployed at the music festival “Glimps” in Ghent in 2015
(RG2). We found that for small sets of 50 to 100 devices, the fingerprint is
80.0 to 67.6 percent unique, whereas for large sets of 1,000 to 10,000 devices the
fingerprint is 33.0 to 15.1 percent unique.

https://support.apple.com/en-us/HT203058, and https://support.apple.com/en-
us/HT201395.

https://support.apple.com/en-us/HT203058
https://support.apple.com/en-us/HT201395
https://support.apple.com/en-us/HT201395
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Since the capability of an adversary to track a certain target depends on the
transmission frequency of the target’s device, we also investigated whether this
frequency can be artificially increased by transmitting “stimulus frames” to the
target (RG1). As the result of examining 12 frame types, an experiment in a con-
trolled environment (RG2) demonstrated that GAS Request frames and Block
Acknowledgement frames are particularly suited for this purpose. However, it
should be mentioned that at the time of performing the experiment, GAS was
still a very new service (introduced in 802.11u), meaning its lack of support back
then has likely increased over the years.

Using the findings from the fingerprinting and stimulus frame experiments, we
composed a methodology for effectively tracking mobile devices even when MAC
address randomization is enabled. This was achieved by linking Probe Response
frames with random MACs together using their fingerprint until the true MAC
address is revealed (for example, when connecting to an AP). Next, we discussed
several countermeasures that can be applied to reduce the effectiveness of such
tracking techniques (RG3).

Besides the explicit information leakage in Probe Requests of Wi-Fi frames that
reveals which device performed a transmission, we identified a type of implicit
information leakage in the LoRa PHY-layer modulation scheme that can be used
for similar purposes. We showed that this information leakage occurs due to small
chirp frequency offset errors between different devices that originate from manu-
facturing defects (RG1). An adversary with access to the PHY-layer LoRa signal,
for example by using an SDR, can thus analyze the frequency error of chirps to
fingerprint individual devices. Since for this reason we do not want to correct
for frequency errors upon receiving LoRa messages as opposed to conventional
LoRa hardware, we moreover developed a custom demodulation technique and
open source GNU Radio-based decoder implementation that allows to synchro-
nize to multiple LoRa devices regardless of any frequency errors imposed on the
signal (RG2). However, we also showed that this technique is less resistant to
Gaussian noise and therefore requires a high SNR. We demonstrated the feasibil-
ity of fingerprinting PHY-layer LoRa signals by training SVM, MLP and CNN
models on 8 different datasets of LoRa chirps, where the best classifier is capable
of classifying the 22 individual devices with 93.33% – 99.0% accuracy on test sets
that were recorded on the same day and location as the training sets. If the test
sets are recorded at a later time, the accuracy drops to 58.67% – 76.80% due to
changes in the channel conditions, meaning the channel conditions are implicitly
fingerprinted alongside the device itself. Furthermore, we showed that even if a
classifier has never seen a training example of a specific device, we can perform
clustering techniques such as DBSCAN on the output space of a neural network
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to perform zero-shot classification of these devices (RG2).

In the final chapter of this thesis, we considered implicit information leakages
in the form of EM emanations that occur during the computations of crypto-
graphic primitives used in wireless protocols, such as AES. We showed that such
leakages can be learned using ML and proposed a novel methodology to train
neural networks on EM traces, called CO. Instead of performing a classifica-
tion of traces, our methodology instead transforms them to an encoding that is
suitable for use in a standard CEMA attack, thereby improving its effectiveness
compared to previous works while at the same time requiring less complex ar-
chitectures (RG2). Furthermore, we demonstrated that by combining the idea
of our methodology with the use of frequency domain features as mentioned in
the work of Tiu et al. [261], the requirement having to align the EM traces can
be removed (RG2). All datasets and tools developed to capture and process the
EM traces using SDRs have been op sourced in consideration of RG3, thereby
allowing the research community to reproduce the acquired results or test for
novel EM side-channel attacks in a different context.

To conclude, an overview of all contributions that resulted from this research,
including those not discussed in this thesis, is given along with a brief description
of their impact in Table 10.0.1.
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Table 10.0.1: An overview of all contributions and their impact.

Contribution Impact

Robyns et al. [215]
(C1)

CVE-2014-4364, a vulnerability that affects all Apple devices prior to
iOS 8, OS X Yosemite, and Apple TV 7. The issue was resolved by Ap-
ple by disabling LEAP by default as an alternative EAP authentication
method. A tool peapwn was released on Github to test for vulnerability
to this attack (23 stars, 6 forks). Cited in 19 subsequent academic
works.

Robyns et al. [216]
(C2)

Discovery of a frame injection vulnerability in the 802.11n and follow-
ing standards, affecting all devices that implement frame aggregation
according to the standard. This issue gained attention on Reddit’s net-
sec forum, where it reached the 23rd highest score of all timea at the
time of discovery. A tool named aggr-inject was released on Github
to test for vulnerability to this attack (264 stars, 44 forks). Another
tool, scapy-fakeap was released to allow for easier vulnerability testing
(183 stars, 45 forks). Cited in 1 subsequent academic work.

Robyns et al. [217] Released online tool at https://wicability.net that allows the security
community to look up the prevalence of a certain IE / security feature
in order to assess the impact of discovered vulnerabilities. Cited in 2
subsequent academic works.

Robyns et al. [218]
(C3, C4, C5)

New MAC-layer fingerprinting techniques, metrics and datasets. The
code is available at the wifi-mac-tracking repository (13 stars, 6 forks).
The datasets are publicly available on CRAWDAD and Zenodo. Some
of the suggested countermeasures are now implemented in mainstream
mobile devices. Cited in 13 subsequent academic works.

Robyns et al. [220]
(C6, C7)

The first full description of the LoRa PHY layer and open-source
decoder gr-lora (189 stars, 52 forks). A dataset of test samples
and the code for reproducing the results have been released on the
lora-decoder-paper repository (5 stars). Cited in 10 subsequent aca-
demic works.

Robyns et al. [219]
(C8)

A novel approach to fingerprint LoRa signals based on PHY-layer fea-
tures alone, using machine learning and, optionally, zero-shot learning.
A virtual machine containing all code, datasets, and scripts to repro-
duce the results has been published on the lora-phy-fingerprinting
repository (9 stars, 3 forks). A talk about LoRa and fingerprinting was
given at FOSDEM 2018. Cited in 25 subsequent academic works.

Robyns et al. [221]
(C9)

A novel technique to attack EM traces using ML that can be applied
in the frequency domain. Training and test sets released to Github on
the correlation-optimization-paper repository in both processed and
unprocessed form (5 stars). A framework for performing EM analysis
with ML called emma was also made available (25 stars, 2 forks). A talk
about EM attacks using ML was given at FOSDEM 2019. Cited in 3
subsequent academic works.

Di Martino et al. [78] In context of the GDPR, it is demonstrated that manual verification
of subject access request credentials poses a number of security risks
due to social engineering and credential spoofing. A talk about these
issues was given at the IAPP Europe Data Protection Congress 2019.
Cited in 3 subsequent academic works.

aSee https://www.reddit.com/r/netsec/comments/3bq96e/vulnerability_in_80211n_standard_
allows_remote/

https://wicability.net
https://www.reddit.com/r/netsec/comments/3bq96e/vulnerability_in_80211n_standard_allows_remote/
https://www.reddit.com/r/netsec/comments/3bq96e/vulnerability_in_80211n_standard_allows_remote/
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11
Future Work

Generally, advances to the state-of-the-art of information security research
hinge on the identification and exploration of new flaws in the established as-
sumptions of a program’s behavior. We have discussed a number of such flaws in
the work that was presented in this thesis. However, as hinted on in Chapter 1,
the true extent of a program’s capabilities remains difficult to determine, since
this would require testing all possible inputs rather than only a subset of inputs
that is derived from functional requirements. In addition, the demand for more
and more features in programs implies an increased complexity, which in turn
results in a further expansion of the set of possible inputs and hence of the attack
surface. Complexity is the worst enemy of security. This is not only true for
the field of wireless security, but also for web security1, network security or even
physical security. So long as each input of every program has not been tested,
there will be potential for researchers to discover new vulnerabilities that could
compromise the security or privacy of users. Hence, there will always be potential
for future work.

A consequence of the aforementioned issue is that there may be undiscovered vul-
nerabilities hidden in systems that are widely used today, and so we might ask
how to uncover them effectively. For the case of explicit information leakage, and
more specifically for wireless protocol design or software implementations, note
that the discovery of a vulnerability usually starts from a hypothesis regarding
the response of a program given a certain input. For example, one might ask:
“How would a Wi-Fi frame aggregation implementation respond if a valid A-
MPDU header is embedded in the payload of a frame?”. This hypothesis can be

1In recent web security research it has for example been demonstrated that by delaying TLS
messages in HTTP/2 and measuring their size, encrypted webpages can be fingerprinted [77,
264]. This shows how complex protocol interactions can lead to information leakage.
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devised based on, for instance, a random guess, a manual code review or based on
similar hypotheses that also lead to vulnerabilities in the past. Therefore, an in-
teresting avenue of future research would be in the domain of fuzzing: generating
as much useful hypotheses as possible, without having to explore the entire space
of possibilities. It may also be interesting to find new ways of providing formal
verification for such complex systems, in order to mitigate attacks. Language-
Theoretic Security (LangSec) [227], which we briefly discussed in Section 5.5.4, is
an example of one of the more recent attempts at providing such verification by
treating expected inputs as a formal language. Similar efforts towards providing
verification can be observed in other domains as well, e.g., the Everest project in
context of the HTTPS ecosystem [25].

For implicit information leakage such as side-channel attacks, the situation is dif-
ferent. Here, the adversary knows that the physical properties measured through
(a combination of) side channels always depend on the inputs provided to a pro-
gram, which constitutes an information leakage vulnerability. To see why this is
true, consider a hypothetical adversary who is capable of measuring the voltage
on each component and interconnect of an integrated circuit. Theoretically, such
a powerful adversary would be able to fully reconstruct the state of a program
by observing the measured voltages, regardless of any side-channel measures that
were taken. It is interesting to note that the area of “white-box cryptography”
research considers this adversarial model, and aims to achieve practical secu-
rity through the use of various obfuscation techniques that make key extraction
computationally intractable [35, 56]. Fortunately, in a practical SCA scenario,
adversaries are typically not as powerful, i.e., they are more limited in terms of
measurement capabilities and operate in a black-box environment.

A successful defence against implicit information leakage is one which makes
it infeasible2) for an adversary to measure a statistical difference of physical
properties between different sensitive inputs, given their resources. Therefore, to
test the true limits of a practical adversary, it would be useful to further research
improvements regarding the measurement and analysis of implicit leakage3. This
is evidenced by new sources of side-channel leakage that continue to be discovered
over the years, such as the recent “screaming channels” by Camurati et al. [43]
or the Meltdown and Spectre attacks in other domains of SCA [138, 154].

2Infeasible here does not necessarily mean impossible. For example, an adversary may even-
tually be able to perform a successful attack, but only after capturing an unrealistic number of
traces.

3An interesting example in white-box cryptography where the discovery of such improve-
ments leads to a successful attack is the differential computation analysis attack introduced by
Bos et al. [35].
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Regarding analysis techniques, an interesting and promising avenue seems the
use of more advanced ML and DL techniques to extract more complex features
from leakage measurements [119, 201]. Since these techniques have outperformed
classical approaches at inferring patterns from highly-dimensional data in the
multiple computer vision domains [151], their usage may result in similar ben-
efits in the domains of SCA and fingerprinting. More specifically, it would be
useful to look at the application of landmark detection in context of SCA. This
would remove the requirement to manually add triggers for the separation of sig-
nals in a trace set. Another appealing use case can be found in super-resolution
techniques: by combining the information from multiple low-resolution leakage
traces and trained, high-resolution leakage models, perhaps it is possible to per-
form successful attacks even when leakage traces are captured at a sample rate
significantly lower than the clock rate of the device under attack.

Finally, concerning measurement techniques, one could consider adversaries with
more advanced measurement hardware in future work. For example, adversaries
that use antenna or probe arrays to respectively fingerprint wireless transceivers
and perform side-channel attacks. This would allow to not only extract features
from the phase or amplitude of a signal, but also from its angle of arrival, which
could contain additional information.
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Appendices





A
Nederlandse Samenvatting

Kwetsbaarheden in de informatieveiligheid van draadloze communicatie
worden veroorzaakt door onverwacht gedrag in een systeem dat voortvloeit uit
gebreken in het ontwerp of de implementatie van een protocol. Deze kwets-
baarheden kunnen door een aanvaller worden uitgebuit om de confidentialiteit,
integriteit of beschikbaarheid van een systeem te schaden, of om de privacy van
gebruikers te ondermijnen. In deze thesis wordt gefocust op een specifieke klasse
van kwetsbaarheden, namelijk informatielekken, in context van twee draadloze
protocollen: Wi-Fi (802.11) en LoRa. Gegeven dat volgens voorspellingen meer
dan 454 miljoen Wi-Fi hotspots en 500 000 LoRa gateways operationeel zullen
zijn tegen 2020, behoren deze protocollen tot de meest populaire draadloze pro-
tocollen die momenteel in gebruik zijn. In deze thesis wordt een onderscheid
gemaakt tussen twee types informatielekken, namelijk expliciete en impliciete
informatielekken.

Het eerste deel van de thesis behandelt expliciete informatielekken, dewelke hun
oorsprong vinden in onvoorziene gebreken in het ontwerp of de implementatie
van draadloze protocollen. Specifiek wordt een kwetsbaarheid toegelicht in het
802.1X PEAP protocol, dat als authenticatiemethode gebruikt wordt in WPA2-
Enterprise netwerken. Deze kwetsbaarheid staat een aanvaller toe om challenge
responses door te sturen vanuit een LEAP handshake als geldige credential voor
een aparte PEAP handshake. Zodoende kan een aanvaller toegang verschaffen
tot het netwerk zonder in het bezit te zijn van geldige authenticatiegegevens. Er
wordt aangetoond dat deze aanval werkt op alle Apple toestellen die zijn uit-
gebracht vóór het verschijnen van iOS 8, OS X Yosemite en Apple TV 7. Als
volgende wordt in de thesis het MAC-layer frame aggregatiemechanisme van Wi-
Fi netwerken bestudeerd, dat geïntroduceerd werd in de 802.11n standaard. Het
resultaat van deze studie is de ontdekking van een nieuwe kwetsbaarheid, die
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een aanvaller toestaat om vanop afstand (bijvoorbeeld over het internet) Wi-Fi
frames te injecteren in een open netwerk door het “delimiter scanning” algoritme
van Wi-Fi toestellen uit te buiten. Specifiek kan deze aanval worden uitgevo-
erd door een speciale payload in de applicatielaag van een pakket te voorzien,
die lekt naar de lagere lagen van de netwerkstack wanneer de A-MPDU delim-
iter van een frame wordt beschadigd door incidentele ruis. Ten slotte wordt in
het deel over expliciete informatielekken een analyse gemaakt van de informatie
die wordt verstuurd in Wi-Fi Probe Request frames. Hierbij wordt aangetoond
dat deze frames voldoende informatie bevatten om het toestel dat de frame ver-
zond uniek te identificeren, zelfs wanneer privacybeschermende maatregelen zoals
MAC-adres randomisatie werden toegepast. De data voor deze analyse werd
vergaard in ons onderzoekscentrum en op het muziekfestival Glimps in 2015.
Verder worden ook enkele nieuwe technieken besproken om meer transmissies
te eliciteren, door bijvoorbeeld varianten van GAS Request en ADDBA Request
frames uit te sturen naar Wi-Fi toestellen. Voor de ontdekte kwetsbaarheden
worden een aantal tegenmaatregelen voorgesteld om hun impact te beperken en
om de security en privacy van gebruikers te verbeteren, zoals bijvoorbeeld het re-
duceren van informatie in Probe Requests en vermijden om tijdens netwerkscans
de SSID uit te sturen.

Het tweede deel van de thesis richt zich op impliciete informatielekken. Deze
ontstaan inherent uit meetbare neveneffecten van een software of hardware im-
plementatie van een protocol. Als eerste voorbeeld van zulke informatielekken
wordt aangetoond hoe verschillen in de frequentie-afwijking van LoRa symbolen
voldoende informatie geven om LoRa toestellen uniek te identificeren op de fysieke
laag van de netwerkstack. Aanvullend hierop wordt een open source implemen-
tatie van een nieuwe demodulatietechniek voor LoRa voorgesteld, die toestaat om
te synchroniseren met LoRa symbolen terwijl aanwezige frequentie-afwijkingen
behouden blijven. Via deze techniek werden 8 datasets van LoRa symbolen ver-
gaard met behulp van een Software Defined Radio. Vervolgens wordt voor elk
van deze datasets besproken met welke nauwkeurigheid symbolen kunnen wor-
den geclassificeerd volgens zender, door enkel gebruik te maken van hun fysieke
radiosignaal. Hiervoor worden SVM, MLP en CNN classifiers uit het domein
van machine learning gebruikt. Verder wordt kort aangetoond dat sommige
toestellen zelfs correct geclassificeerd kunnen worden zonder te beschikken over
transmissies van dit toestel tijdens de trainingsfase. Tot slot worden impliciete
informatielekken in de vorm van elektromagnetische (EM) straling beschouwd.
Concreet wordt er gekeken naar de EM-straling die lekt tijdens het uitvoeren van
AES, een cryptografisch algoritme dat gebruikt wordt in Wi-Fi en LoRa. De
toepassing van machine learning en deep learning wordt in deze context onder-
zocht en een nieuwe methodologie om de geheime AES-sleutel te vinden wordt
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tevens beschreven. Deze methodologie vereist slechts enkele minuten trainingstijd
op courante hardware omwille van een minder complexe architectuur, terwijl de
performantie ten opzichte van state-of-the-art deep learning algoritmes op de
ASCAD benchmark dataset wordt verbeterd. Bijkomend wordt de gebruikelijke
vereiste om signalen te aligneren in tijd versoepeld door de methodologie toe te
passen in het frequentiedomein van de EM-signalen. Hier wordt ten slotte een
praktische “proof of concept” van gegeven waarbij gebruik wordt gemaakt van
een USRP B210 om een AES-implementatie op een Arduino Duemilanove aan te
vallen.
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B
Public Datasets and Code

The following datasets and code repositories were released to the public domain,
in accordance with C10:

scapy-fakeap Fake, monitor-mode wireless AP implementation using Python
and Scapy, intended for convenient testing of 802.11 protocols and imple-
mentations. https://github.com/rpp0/scapy-fakeap

peapwn A proof-of-concept implementation of the LEAP relay attack described
in Chapter 4. https://github.com/rpp0/peapwn

ath9k-linux Modified ath9k kernel modules that add support for sending cus-
tom debugging commands to ath9k_htc devices. https://github.com/
rpp0/linux

open-ath9k-htc-firmware Modified ath9k_htc firmware that allows the user
to set a fixed data rate, write and read registers or print data to dmesg using
the kernel modules from ath9k-linux. This was used to perform the fixed
data rate experiments from Chapter 5. https://github.com/rpp0/open-
ath9k-htc-firmware

aggr-inject Proof-of-concept implementation of the A-MPDU MAC-layer in-
jection attack detailed in Chapter 5. https://github.com/rpp0/aggr-
inject

wifi-mac-tracking Python implementation of the bit entropy analysis, deanony-
mization algorithm, and transmission instigation techniques described in
Chapter 6. https://github.com/rpp0/wifi-mac-tracking

wifi-mac-tracking (datasets) Datasets used for the experiments described in
Chapter 6. https://zenodo.org/record/545970

https://github.com/rpp0/scapy-fakeap
https://github.com/rpp0/peapwn
https://github.com/rpp0/linux
https://github.com/rpp0/linux
https://github.com/rpp0/open-ath9k-htc-firmware
https://github.com/rpp0/open-ath9k-htc-firmware
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https://zenodo.org/record/545970
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lora-decoder-paper Scripts for reproducing the PDR, SNR and compatibility
experiments from Chapter 7. https://github.com/rpp0/lora-decoder-
paper

lora-decoder-paper (datasets) Datasets for reproducing the PDR and SNR
experiment’s figures from Chapter 7, to be used in conjunction with the
lora-decoder-paper scripts. https://research.edm.uhasselt.be/pro\
byns/lora/amcsdlms-datasets.zip

python-loranode High-level interface for sending serial commands to the RN-
2486 LoRa module. https://github.com/rpp0/python-loranode

gr-lora Code for the GNU Radio based LoRa demodulator implementation from
Chapter 7. https://github.com/rpp0/gr-lora

lora-phy-fingerprinting Code and virtual machine with trained models and
datasets for reproducing the results and figures from Chapter 8. https:
//github.com/rpp0/lora-phy-fingerprinting

correlation-optimization-paper Code and datasets required for reproducing
the results presented in Chapter 9. This includes the AES EM leak-
age dataset from the Arduino Duemilanove. https://github.com/rpp0/
correlation-optimization-paper

emma A tool for the distributed analysis of EM leakage, supporting various
classical attacks such as CEMA, as well as the CO method described in
Chapter 9. https://github.com/rpp0/emma

electric-unicorn A tool based on the unicorn engine that simulates the EM
leakage of a binary executable. https://github.com/rpp0/electric-
unicorn

https://github.com/rpp0/lora-decoder-paper
https://github.com/rpp0/lora-decoder-paper
https://research.edm.uhasselt.be/pro\byns/lora/amcsdlms-datasets.zip
https://research.edm.uhasselt.be/pro\byns/lora/amcsdlms-datasets.zip
https://github.com/rpp0/python-loranode
https://github.com/rpp0/gr-lora
https://github.com/rpp0/lora-phy-fingerprinting
https://github.com/rpp0/lora-phy-fingerprinting
https://github.com/rpp0/correlation-optimization-paper
https://github.com/rpp0/correlation-optimization-paper
https://github.com/rpp0/emma
https://github.com/rpp0/electric-unicorn
https://github.com/rpp0/electric-unicorn
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The contents of the following scientific contributions are included in this thesis:

[Robyns et al., 2019] Pieter Robyns, Peter Quax, Wim Lamotte. Improving
CEMA using Correlation Optimization. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES). Atlanta, USA. 2019
(1), 1-24. (A2)

[Robyns et al., 2018] Pieter Robyns, Peter Quax, Wim Lamotte, William The-
naers. A Multi-Channel Software Decoder for the LoRa Modulation Scheme.
Proceedings of the 3rd International Conference on Internet of Things, Big
Data and Security. Madeira, Portugal. 2018. (C1)

[Robyns et al., 2017] Pieter Robyns, Eduard Marin, Wim Lamotte, Peter
Quax, Dave Singelée and Bart Preneel. Physical-Layer Fingerprinting of
LoRa devices using Supervised and Zero-Shot Learning. Proceedings of
the 10th ACM Conference on Security & Privacy in Wireless and Mobile
Networks. Boston, MA, USA. 2017. (C1)

[Robyns et al., 2017] Pieter Robyns, Bram Bonné, Peter Quax and Wim Lam-
otte. Non-cooperative 802.11 MAC layer fingerprinting and tracking of mo-
bile devices, Security and Communication Networks. Hindawi. 2017. (A1)

[Robyns et al., 2015] Pieter Robyns, Peter Quax and Wim Lamotte. Injection
Attacks on 802.11n MAC Frame Aggregation. Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks. New
York, NY, USA. 2015. (C1)

[Robyns et al., 2014] Pieter Robyns, Bram Bonné, Peter Quax and Wim Lam-
otte. Exploiting WPA2-enterprise Vendor Implementation Weaknesses



226 APPENDIX C. SCIENTIFIC CONTRIBUTIONS AND PUBLICATIONS

Through Challenge Response Oracles. Proceedings of the 2014 ACM Con-
ference on Security and Privacy in Wireless & Mobile Networks. Oxford,
United Kingdom. 2014. (C1)

The following scientific contributions are not included in this thesis:

[Di Martino et al., 2019] Mariano Di Martino, Pieter Robyns, Winnie Weyts,
Peter Quax, Wim Lamotte, Ken Andries. Personal Information Leakage
by Abusing the GDPR “Right of Access”. Proceedings of the Fifteenth
Symposium on Usable Privacy and Security (SOUPS). Santa Clara, CA,
USA. 2019. (C1)

[Di Martino et al., 2018] Mariano Di Martino, Pieter Robyns, Peter Quax,
Wim Lamotte. IUPTIS: A Practical, Cache-resistant Fingerprinting Tech-
nique for Dynamic Webpages. Proceedings of the 14th International Confer-
ence on Web Information Systems and Technologies - Volume 1: WEBIST.
Seville, Spain. 2018. (C1)

[Robyns et al., 2017] Pieter Robyns, Peter Quax, and Wim Lamotte. Opin-
ion: PHY-Layer Security is no Alternative to Cryptography. Proceedings
of the 10th ACM Conference on Security & Privacy in Wireless and Mobile
Networks. Boston, MA, USA. 2017. (C1)

[Robyns et al., 2016] Pieter Robyns, Bram Bonné, Peter Quax and Wim Lam-
otte. Poster: Assessing the Impact of 802.11 Vulnerabilities using Wica-
bility. Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. Darmstadt, Germany. 2016. (C2)



D
Non-academic Publications and Press

The following is a list of non-academic publications and press-related events per-
taining to the valorization of research results presented in this thesis.

Belgische student ondekt lek bij Apple (2014) National television item on
VTM News about the research presented in Chapter 4. http://nieuws.
vtm.be/binnenland/106218-belgische-student-ontdekt-lek-bij-apple.

Vulnerability in 802.11n allows remote frame injection (2015) Reddit dis-
cussion in /r/netsec about the vulnerability described in Chapter 5, which
reached the 23rd highest score of all time at the time of publication. https:
//shorturl.at/knvC6.

LoRa software demodulation fingerprinting (2016) Poster presented at the
iMinds Superminds conference in Brussels, see Figure D.0.1.

LoRa demodulation and AES EM attacks with SDR (2018) Presentation
at FOSDEM 2018 about the work presented in Chapter 7 and Chapter 8.
https://archive.fosdem.org/2018/schedule/event/sdr_lora_aes/.

Low-cost EM attacks using RTL-SDR and ML (2019) Presentation at FOS-
DEM 2019 about the work presented in Chapter 9. https://archive.
fosdem.org/2019/schedule/event/sdr_em_sidechannel_attacks/.

Bedrijven gaan slordig om met onze gegevens (2019) National television
item on VTM News about flawed user credential verification methods in
context of GDPR subject access requests. This work was performed in col-
laboration with Mariano Di Martino. https://m.hln.be/nieuws/binnenland/
bedrijven-gaan-slordig-om-met-onze-gegevens~a2210e6b/.
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LoRa Software Demodulation and PHY Layer Fingerprinting
Pieter Robyns*, Eduard Marin†

*UHasselt (EDM) – tUL– iMinds †KU Leuven – ESAT-COSIC – iMinds

What is LoRa? Software Demodulation

References

• LoRa is a modulation method designed for Low-Power Wide-Area
Networks (LPWANs)

• Developed and patented by Semtech
• Transmission range between 2 – 15 km and data rate from 0.3 to 50

kbps [2]
• Built-in AES encryption on the MAC layer (LoRaWAN specification [1])
• Typically used in sensor networks with a star topology, where LoRa

gateways relay packets to a network server for further processing
• Examples: temperature, parking, pressure, positioning sensors

Icons designed by “Madebyoliver” and distributed by Flaticon [3].

[1] The LoRa Alliance™, LoRa Alliance™ Technology, https://www.lora-alliance.org/What-Is-
LoRa/Technology, accessed September 2016.

[2] Microchip, RN2483 (433/868 MHz) LoRa™ Modem, 
http://ww1.microchip.com/downloads/en/DeviceDoc/70005219A.pdf, accessed 
September 2016.

[3] Flaticon, Free vector icons, http://www.flaticon.com/.

*Contact: {name}.{surname}@uhasselt.be
†Contact: {name}.{surname}@kuleuven.be

PHY Layer Security
• The PHY layer is the lowest layer in the OSI model
• Goal: to provide authentication on this layer without the use of

standard cryptographic primitives, comparable to biometric
fingerprinting

• Each wireless radio has unique features, which are imparted due to
small errors in the manufacturing process

• Use cases exist for both offensive and defensive purposes
• Offensive

• Impersonate a device by cloning its fingerprint
• Track a device using positioning algorithms

• Defensive
• Implicit identification and authentication of messages

• Challenges:
• Identify and exploit useful features
• Defend against spoofing attacks by powerful attackers
• Fingerprint in noisy environments

• Demodulating LoRa in software:
• Allows us to access the PHY layer header, sync, and

preamble
• Allows for receiving frames offline / in simulations
• Removes need for LoRa modem in order to check correct

operation of the network
• Challenges:

• Some implementation details not included in patent 
reverse engineering was required (PHY header, sync, coding,
whitening)

• Implemented as “GNU Radio” blocks: gr-lora
• Support for all SFs and CRs
• Available for free at https://www.github.com/rpp0/gr-lora

Demo

• Receiver: Software Defined Radio (SDR). Any SDR can be used e.g.
USRP, HackRF, RTL-SDR, etc.

• Transmitter: RN2483 LoRa radio chip on custom moduleReference signal 
collection Identify features

iMinds, the digital digital research and incubation center has merged with imec into one high-tech research and innovation hub for nanoelectronics and digital technologies, under the name imec.

Image source: [1]

Classify devices

Figure D.0.1: Poster presented about our LoRa decoder at the iMinds Superminds 2016
conference in Brussels.



References

[1] 3GPP. LTE Release 15. https://www.3gpp.org/release-15, 2019. Ac-
cessed: 3 June 2019.

[2] 3GPP. LTE Release 13. https://www.3gpp.org/release-13, 2019. Ac-
cessed: 3 June 2019.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[4] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[5] Michael Abbott-Jard, Harpal Shah, and Ashish Bhaskar. Empirical eval-
uation of Bluetooth and WiFi scanning for road transport. In 36th Aus-
tralasian Transport Research Forum (ATRF), page 14, 2013.

[6] ABI Research. 161 Million Consumer Wi-Fi Access Points Shipped in 2013;
802.11ac Sales Rapidly Accelerating. https://www.abiresearch.com/
press/1391-million-consumer-wi-fi-access-\points-shipped-. Ac-
cessed: 2015.

[7] Adafruit. Adafruit Feather 32u4 specification. https://www.adafruit.
com/product/3078, 2017. Accessed: 11 January 2017.

[8] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Ro-
hatgi. The EM Side-Channel(s). In Burton S. Kaliski, çetin K. Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems -

https://www.3gpp.org/release-15
https://www.3gpp.org/release-13
https://www.tensorflow.org/
https://www.abiresearch.com/press/1391-million-consumer-wi-fi-access-\points-shipped-
https://www.abiresearch.com/press/1391-million-consumer-wi-fi-access-\points-shipped-
https://www.adafruit.com/product/3078
https://www.adafruit.com/product/3078


230 REFERENCES

CHES, pages 29–45, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
ISBN 978-3-540-36400-9.

[9] Islam Alyafawi, Desislava C Dimitrova, and Torsten Braun. Real-time
passive capturing of the GSM radio. In IEEE International Conference
on Communications (ICC), pages 4401–4406. IEEE, 2014.

[10] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and David Kotz. On
the reliability of wireless fingerprinting using clock skews. In Proceedings of
the Third ACM Conference on Wireless Network Security, pages 169–174.
ACM, 2010.

[11] Cédric Archambeau, Eric Peeters, F-X Standaert, and J-J Quisquater.
Template attacks in principal subspaces. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 1–14. Springer,
2006.

[12] Nadarajah Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-middle
in tunnelled authentication protocols. In Security Protocols, pages 28–41.
Springer, 2005.

[13] Atheros Communications, Malinen, J. wpa_supplicant configura-
tion options. https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_
supplicant.conf, . Accessed: February 10, 2016.

[14] Atheros Communications, Malinen, J. wpa_supplicant official source code
repository. https://www.w1.fi/cgit/hostap/tree/src/p2p/p2p_sd.
c?id=fb09ed338919db09f3990196171fa73b37e7a17f#n384, . Accessed:
February 10, 2016.

[15] Azzy’s Electronics. LoRaWAN RN2483/RN2903 breakout board
specification. https://www.tindie.com/products/DrAzzy/lorawan-
rn2483rn2903-breakout-board-assembled/, 2017. Accessed: 11 January
2017.

[16] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and
Caroline Sporleder. Acoustic Side-Channel Attacks on Printers. In USENIX
Security symposium, pages 307–322, 2010.

[17] Paramvir Bahl and Venkata N Padmanabhan. RADAR: An in-building RF-
based user location and tracking system. In Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications So-
cieties (INFOCOM), volume 2, pages 775–784, 2000.

https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf
https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf
https://www.w1.fi/cgit/hostap/tree/src/p2p/p2p_sd.c?id=fb09ed338919db09f3990196171fa73b37e7a17f#n384
https://www.w1.fi/cgit/hostap/tree/src/p2p/p2p_sd.c?id=fb09ed338919db09f3990196171fa73b37e7a17f#n384
https://www.tindie.com/products/DrAzzy/lorawan-rn2483rn2903-breakout-board-assembled/
https://www.tindie.com/products/DrAzzy/lorawan-rn2483rn2903-breakout-board-assembled/


REFERENCES 231

[18] Alessandro Barenghi, Gerardo Pelosi, and Yannick Teglia. Information
leakage discovery techniques to enhance secure chip design. In International
Workshop on Information Security Theory and Practices (IFIP), pages 128–
143. Springer, 2011.

[19] Andrea Barisani and Daniele Bianco. Sniffing Keystrokes with
Lasers / Voltmeters. BlackHat USA, August, 2009. https:
//www.blackhat.com/presentations/bh-usa-09/BARISANI/BHUSA09-
Barisani-Keystrokes-SLIDES.pdf.

[20] Andrea Barisani and Daniele Bianco. Fully arbitrary 802.3 packet injection:
maximizing the Ethernet attack surface. BlackHat USA, August, 2013.
http://dev.inversepath.com/download/802.3/whitepaper.txt.

[21] K. Bauer, H. Gonzales, and D. McCoy. Mitigating Evil Twin Attacks in
802.11. In IEEE International Performance, Computing and Communica-
tions Conference (IPCCC), pages 513–516, Dec 2008. doi: 10.1109/PCCC.
2008.4745081.

[22] George Becker, J Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe,
G Kenworthy, T Kouzminov, A Leiserson, M Marson, Pankaj Rohatgi,
et al. Test vector leakage assessment (TVLA) methodology in practice.
In International Cryptographic Module Conference, volume 1001, page 13,
2013.

[23] Richard Bellman. A new type of approximation leading to reduction of
dimensionality in control processes. Journal of Mathematical Analysis and
Applications, 27(2):454–459, 1969.

[24] Elyes Ben Hamida, Guillaume Chelius, and Jean Marie Gorce. Impact
of the physical layer modeling on the accuracy and scalability of wireless
network simulation. Simulation, 85(9):574–588, 2009.

[25] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, Rustan Leino, Jay Lorch, et al. Everest: Towards a verified,
drop-in replacement of HTTPS. In 2nd Summit on Advances in Program-
ming Languages (SNAPL). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[26] Giuseppe Bianchi. Performance analysis of the IEEE 802.11 distributed
coordination function. IEEE Journal on Selected Areas in Communications,
18(3):535–547, 2000.

https://www.blackhat.com/presentations/bh-usa-09/BARISANI/BHUSA09-Barisani-Keystrokes-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/BARISANI/BHUSA09-Barisani-Keystrokes-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/BARISANI/BHUSA09-Barisani-Keystrokes-SLIDES.pdf
http://dev.inversepath.com/download/802.3/whitepaper.txt


232 REFERENCES

[27] Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer.
A GNU radio-based IEEE 802.15.4 testbed. GI/ITG KuVS Fachgespräch
Drahtlose Sensornetze (FGSN), pages 37–40, 2013.

[28] Bastian Bloessl, Michele Segata, Christoph Sommer, and Falko Dressler.
An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio. In Proceedings
of the Second Workshop on Software Radio Implementation Forum, pages
9–16. ACM, 2013.

[29] Bastian Bloessl, Christoph Sommer, Falko Dressler, and David Eckhoff.
The scrambler attack: A robust physical layer attack on location privacy in
vehicular networks. In International Conference on Computing, Networking
and Communications (ICNC), pages 395–400. IEEE, 2015.

[30] Bluetooth SIG, Inc. Bluetooth Core Specification v5.0, December 2016.

[31] Josh Blum. LoRa SDR project. https://github.com/myriadrf/LoRa-
SDR, 2017. Accessed: 10 October 2017.

[32] Lilian Bohy, Michael Neve, David Samyde, and Jean-Jacques Quisquater.
Principal and Independent Component Analysis for Crypto-systems with
Hardware Unmasked Units. In Proceedings of e-Smart. Citeseer, 2003.

[33] Bram Bonné, Arno Barzan, Peter Quax, and Wim Lamotte. WiFiPi: In-
voluntary tracking of visitors at mass events. In IEEE 14th International
Symposium and Workshops on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pages 1–6, 2013.

[34] Bram Bonné, Peter Quax, and Wim Lamotte. Your Mobile Phone
is a Traitor! – Raising Awareness on Ubiquitous Privacy Issues with
SASQUATCH. International Journal on Information Technologies & Se-
curity, 6(3), 2014.

[35] Joppe W Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differ-
ential computation analysis: Hiding your white-box designs is not enough.
In International Conference on Cryptographic Hardware and Embedded Sys-
tems, pages 215–236. Springer, 2016.

[36] Sergey Bratus, Cory Cornelius, David Kotz, and Daniel Peebles. Active
behavioral fingerprinting of wireless devices. In Proceedings of the First
ACM Conference on Wireless Network Security, pages 56–61. ACM, 2008.

[37] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 16–29. Springer, 2004.

https://github.com/myriadrf/LoRa-SDR
https://github.com/myriadrf/LoRa-SDR


REFERENCES 233

[38] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. Wireless
device identification with radiometric signatures. In Proceedings of the
14th ACM International Conference on Mobile Computing and Networking,
pages 116–127. ACM, 2008.

[39] Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache. Temper-
ature attacks. IEEE Security & Privacy, 7(2):79–82, 2009.

[40] Johnny Cache. Fingerprinting 802.11 implementations via statistical anal-
ysis of the duration field. http://www.uninformed.org/?v=5&a=1&t=pdf,
2006. Accessed: 22 November 2019.

[41] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures.
In International Conference on Cryptographic Hardware and Embedded Sys-
tems, pages 45–68. Springer, 2017.

[42] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. Device-
to-device communications with Wi-Fi Direct: overview and experimenta-
tion. IEEE Wireless Communications, 20(3):96–104, 2013.

[43] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: when electromagnetic side chan-
nels meet radio transceivers. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 163–177.
ACM, 2018.

[44] Aldo Cassola, William Robertson, Engin Kirda, and Guevara Noubir. A
Practical, Targeted, and Stealthy Attack Against WPA Enterprise Authen-
tication. In Proceedings of NDSS, volume 2013, 2013.

[45] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi. Long-Range Com-
munications in Unlicensed Bands: the Rising Stars in the IoT and Smart
City Scenarios. IEEE Wireless Communications, 23, October 2016.

[46] Adrian Chadd. Atheros ath9k transmit path documentation. https://
github.com/erikarn/ath9k-docs/blob/master/ath9k-xmit.txt. Ac-
cessed: 2015.

[47] Gayathri Chandrasekaran, John-Austen Francisco, Vinod Ganapathy,
Marco Gruteser, and Wade Trappe. Detecting identity spoofs in IEEE
802.11e wireless networks. In Global Telecommunications Conference
(GLOBECOM), pages 1–6. IEEE, 2009.

http://www.uninformed.org/?v=5&a=1&t=pdf
https://github.com/erikarn/ath9k-docs/blob/master/ath9k-xmit.txt
https://github.com/erikarn/ath9k-docs/blob/master/ath9k-xmit.txt


234 REFERENCES

[48] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(3):27, 2011.

[49] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In In-
ternational Workshop on Cryptographic Hardware and Embedded Systems,
pages 13–28. Springer, 2002.

[50] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks.
In Cryptographic Hardware and Embedded Systems - CHES, pages 13–
28, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-
36400-9.

[51] Periklis Chatzimisios, Anthony C Boucouvalas, and Vasileios Vitsas. Per-
formance analysis of IEEE 802.11 DCF in presence of transmission errors.
In IEEE International Conference on Communications, volume 7, pages
3854–3858. IEEE, 2004.

[52] M. Chernyshev, C. Valli, and P. Hannay. On 802.11 Access Point Lo-
catability and Named Entity Recognition in Service Set Identifiers. IEEE
Transactions on Information Forensics and Security, 11(3):584–593, March
2016. ISSN 1556-6013.

[53] François Chollet et al. Keras. https://keras.io, 2015.

[54] François Chollet et al. Keras Input layer implementa-
tion. Github. https://github.com/keras-team/keras/blob/
9080613dbc6f0840d7544bccc416121f0864a7fd/keras/engine/input_
layer.py#L114, 2019. Accessed: 17 September 2019.

[55] Omar Choudary and Markus G Kuhn. Efficient Template Attacks. In Inter-
national Conference on Smart Card Research and Advanced Applications,
pages 253–270. Springer, 2013.

[56] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.
White-box cryptography and an AES implementation. In International
Workshop on Selected Areas in Cryptography, pages 250–270. Springer,
2002.

[57] Mark Ciampa. CWNA Guide to Wireless LANs. Cengage Learning, 2012.
ISBN 978-1133132172.

[58] Cisco. Dictionary Attack on Cisco LEAP Vulnerability. http:
//www.cisco.com/en/US/tech/tk722/tk809/technologies_security_
notice09186a00801aa80f.html, 2003.

https://keras.io
https://github.com/keras-team/keras/blob/9080613dbc6f0840d7544bccc416121f0864a7fd/keras/engine/input_layer.py#L114
https://github.com/keras-team/keras/blob/9080613dbc6f0840d7544bccc416121f0864a7fd/keras/engine/input_layer.py#L114
https://github.com/keras-team/keras/blob/9080613dbc6f0840d7544bccc416121f0864a7fd/keras/engine/input_layer.py#L114
http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html
http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html
http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html


REFERENCES 235

[59] Cisco Systems. Number of public Wi-Fi hotspots worldwide
from 2016 to 2022 (in millions). Statista - The Statistics Por-
tal. https://www.statista.com/statistics/677108/global-public-
wi-fi-hotspots/, 2019. Accessed: 3 July 2019.

[60] Cherita L Corbett, Raheem A Beyah, and John A Copeland. Using ac-
tive scanning to identify wireless NICs. In IEEE Information Assurance
Workshop, pages 239–246. IEEE, 2006.

[61] Cherita L Corbett, Raheem A Beyah, and John A Copeland. Passive clas-
sification of wireless NICs during active scanning. International Journal of
Information Security, 7(5):335–348, 2008.

[62] Mathieu Cunche. I know your MAC Address: Targeted tracking of individ-
ual using Wi-Fi. Journal of Computer Virology and Hacking Techniques,
10(4):219–227, 2014.

[63] Mathieu Cunche, Mohamed-Ali Kaafar, and Roksana Boreli. Linking wire-
less devices using information contained in Wi-Fi probe requests. Pervasive
and Mobile Computing, 11:56–69, 2014.

[64] Felipe Cunha, Leandro Villas, Azzedine Boukerche, Guilherme Maia, Aline
Viana, Raquel AF Mini, and Antonio AF Loureiro. Data communication
in VANETs: protocols, applications and challenges. Ad Hoc Networks, 44:
90–103, 2016.

[65] Adrian Dabrowski, Katharina Krombholz, Johanna Ullrich, and Edgar R
Weippl. QR Inception: Barcode-in-Barcode Attacks. In Proceedings of the
4th ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, pages 3–10. ACM, 2014.

[66] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the ad-
vanced encryption standard. Springer Science & Business Media, 2013.

[67] Boris Danev and Srdjan Capkun. Transient-based identification of wire-
less sensor nodes. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, pages 25–36. IEEE Computer
Society, 2009.

[68] Boris Danev, Thomas S. Heydt-Benjamin, and Srdjan Čapkun. Physical-
layer Identification of RFID Devices. In Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM’09, pages 199–214, Berkeley, CA,
USA, 2009. USENIX Association. URL http://dl.acm.org/citation.
cfm?id=1855768.1855781.

https://www.statista.com/statistics/677108/global-public-wi-fi-hotspots/
https://www.statista.com/statistics/677108/global-public-wi-fi-hotspots/
http://dl.acm.org/citation.cfm?id=1855768.1855781
http://dl.acm.org/citation.cfm?id=1855768.1855781


236 REFERENCES

[69] Boris Danev, Heinrich Luecken, Srdjan Capkun, and Karim El Defrawy.
Attacks on physical-layer identification. In Proceedings of the Third ACM
Conference on Wireless Network Security, pages 89–98. ACM, 2010.

[70] Boris Danev, Srdjan Capkun, Ramya Jayaram Masti, and Thomas S.
Benjamin. Towards practical identification of HF RFID devices. ACM
Transactions on Information and System Security (TISSEC), 15(2):7:1–
7:24, jul 2012. ISSN 1094-9224. doi: 10.1145/2240276.2240278. URL
http://doi.acm.org/10.1145/2240276.2240278.

[71] Boris Danev, Davide Zanetti, and Srdjan Capkun. On physical-layer iden-
tification of wireless devices. ACM Computing Surveys (CSUR), 45(1):6,
2012.

[72] Douglas SJ De Couto, Daniel Aguayo, John Bicket, and Robert Morris.
A high-throughput path metric for multi-hop wireless routing. Wireless
Networks, 11(4):419–434, 2005.

[73] Amine Dehbaoui, Victor Lomne, Philippe Maurine, Lionel Torres, and
Michel Robert. Enhancing electromagnetic attacks using spectral coher-
ence based cartography. In IFIP/IEEE International Conference on Very
Large Scale Integration-System on a Chip, pages 135–155. Springer, 2009.

[74] Alan DeKok and Adam Sulmicki. Cisco LEAP protocol description. http:
//freeradius.org/rfc/leap.txt, 2001.

[75] Johannes Demel, Sebastian Koslowski, and Friedrich K Jondral. A LTE re-
ceiver framework using GNU Radio. Journal of Signal Processing Systems,
78(3):313–320, 2015.

[76] Loh Chin Choong Desmond, Cho Chia Yuan, Tan Chung Pheng, and
Ri Seng Lee. Identifying unique devices through wireless fingerprinting.
In Proceedings of the First ACM Conference on Wireless Network Secu-
rity, pages 46–55. ACM, 2008.

[77] Mariano Di Martino, Peter Quax, and Wim Lamotte. Realistically Fin-
gerprinting Social Media Webpages in HTTPS Traffic. In Proceedings of
the 14th International Conference on Availability, Reliability and Security.
ACM, 2019.

[78] Mariano Di Martino, Pieter Robyns, Winnie Weyts, Peter Quax, Wim
Lamotte, and Ken Andries. Personal Information Leakage by Abusing the
GDPR “Right of Access”. In Fifteenth Symposium on Usable Privacy and
Security (SOUPS), 2019.

http://doi.acm.org/10.1145/2240276.2240278
http://freeradius.org/rfc/leap.txt
http://freeradius.org/rfc/leap.txt


REFERENCES 237

[79] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Proto-
col. RFC 5246, IETF, August 2008. URL http://tools.ietf.org/html/
rfc5246.

[80] Tim Dierks and Eric Rescorla. RFC 5246: The Transport Layer Security
(TLS) Protocol. The Internet Engineering Task Force, 2008.

[81] Dragino. LoRa/GPS HAT specification. http://wiki.dragino.com/
index.php?title=Lora/GPS_HAT, 2017. Accessed: 11 January 2017.

[82] Ekahau. Asset tracking & management. http://www.ekahau.com/real-
time-location-system/solutions/healthcare/asset-tracking-
management. Accessed: January 19, 2016.

[83] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the 2nd International Conference on Knowl-
edge Discovery and Data Mining, volume 96, pages 226–231, 1996.

[84] Eurostat. Statistics database - individuals - mobile internet access [isoc_ci_
im_i]. https://ec.europa.eu/eurostat/web/digital-economy-and-
society/data/database, 2019. Accessed: 3 June 2019.

[85] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography En-
gineering: Design Principles and Practical Applications. Wiley Publishing,
2010. ISBN 0470474246, 9780470474242.

[86] FIRST.Org, Inc. Common Vulnerability Scoring System v3.0. Techni-
cal Report v1.9, FIRST. URL https://www.first.org/cvss/cvss-v30-
specification_v1.9.pdf.

[87] Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie V
Randwyk, and Douglas Sicker. Passive Data Link Layer 802.11 Wireless
Device Driver Fingerprinting. In USENIX Security, 2006.

[88] Julien Freudiger. How Talkative is Your Mobile Device?: An Experimental
Study of Wi-Fi Probe Requests. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, WiSec ’15, pages
8:1–8:6, New York, NY, USA, 2015. ISBN 978-1-4503-3623-9.

[89] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin K. Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES,
pages 251–261, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN
978-3-540-44709-2.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://wiki.dragino.com/index.php?title=Lora/GPS_HAT
http://wiki.dragino.com/index.php?title=Lora/GPS_HAT
http://www.ekahau.com/real-time-location-system/solutions/healthcare/asset-tracking-management
http://www.ekahau.com/real-time-location-system/solutions/healthcare/asset-tracking-management
http://www.ekahau.com/real-time-location-system/solutions/healthcare/asset-tracking-management
https://ec.europa.eu/eurostat/web/digital-economy-and-society/data/database
https://ec.europa.eu/eurostat/web/digital-economy-and-society/data/database
https://www.first.org/cvss/cvss-v30-specification_v1.9.pdf
https://www.first.org/cvss/cvss-v30-specification_v1.9.pdf


238 REFERENCES

[90] Matthew S. Gast. 802.11 Wireless Networks: The Definitive Guide, Second
Edition. O’Reilly, 2005. ISBN 978-0-596-10052-0.

[91] Matthew S. Gast. 802.11n: A Survival Guide. O’Reilly, 2012. ISBN 978-
1-449-31204-6.

[92] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algo-
rithm of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[93] Catherine H Gebotys and Brian A White. EM analysis of a wireless Java-
based PDA. ACM Transactions on Embedded Computing Systems (TECS),
7(4):44, 2008.

[94] Catherine H Gebotys, Simon Ho, and Chin Chi Tiu. EM analysis of Rijn-
dael and ECC on a wireless Java-based PDA. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 250–264. Springer,
2005.

[95] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In International Cryptology Conference,
pages 444–461. Springer, 2014.

[96] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Steal-
ing keys from PCs using a radio: cheap electromagnetic attacks on win-
dowed exponentiation. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 207–228. Springer, 2015.

[97] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off
my laptop: physical side-channel key-extraction attacks on PCs. Jour-
nal of Cryptographic Engineering, 5(2):95–112, Jun 2015. ISSN 2190-
8516. doi: 10.1007/s13389-015-0100-7. URL https://doi.org/10.1007/
s13389-015-0100-7.

[98] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. ECDH
key-extraction via low-bandwidth electromagnetic attacks on PCs. In Cryp-
tographers’ Track at the RSA Conference, pages 219–235. Springer, 2016.

[99] Nadia Ghamrawi and Andrew McCallum. Collective multi-label classifica-
tion. In Proceedings of the 14th ACM International Conference on Infor-
mation and Knowledge Management, pages 195–200. ACM, 2005.

[100] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 15–29. Springer, 2006.

https://doi.org/10.1007/s13389-015-0100-7
https://doi.org/10.1007/s13389-015-0100-7


REFERENCES 239

[101] Boris Ginzburg and Alex Kesselman. Performance analysis of A-MPDU
and A-MSDU aggregation in IEEE 802.11 n. In Sarnoff Symposium, pages
1–5. IEEE, 2007.

[102] Stuart Golden, Steve S Bateman, et al. Sensor measurements for Wi-Fi
location with emphasis on time-of-arrival ranging. IEEE Transactions on
Mobile Computing, 6(10):1185–1198, 2007.

[103] Travis Goodspeed. Phantom Boundaries and Cross-layer Illusions in 802.15.
4 Digital Radio. 2014.

[104] Travis Goodspeed and Sergey Bratus. 802.11 Packets in Packets, A Stan-
dard Compliant Exploit of Layer 1. In 28th Chaos Communications
Congress, pages 1–60, 2011.

[105] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Rebecca Shapiro, and
Ryan Speers. Packets in Packets: Orson Welles’ In-Band Signaling Attacks
for Modern Radios. In WOOT, pages 54–61, 2011.

[106] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for
side-channel resistance validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[107] Google. Privacy: MAC randomization. https://source.android.com/
devices/tech/connect/wifi-mac-randomization, 2019. Accessed: 22
November 2019.

[108] Claire Goursaud and Jean-Marie Gorce. Dedicated networks for IoT:
PHY/MAC state of the art and challenges. EAI Endorsed Transactions
on Internet of Things, 2015.

[109] F. Gray. Pulse code communication, mar 1953. URL https://www.
google.com/patents/US2632058. US Patent 2,632,058.

[110] Marco Gruteser and Dirk Grunwald. Enhancing location privacy in wire-
less LAN through disposable interface identifiers: a quantitative analysis.
Mobile Networks and Applications, 10(3):315–325, 2005.

[111] Sylvain Guilley, Philippe Hoogvorst, and Renaud Pacalet. Differential
power analysis model and some results. Smart Card Research and Advanced
Applications VI, pages 127–142, 2004.

[112] Fanglu Guo and Tzi-cker Chiueh. Sequence number-based MAC address
spoof detection. In Recent Advances in Intrusion Detection, pages 309–329.
Springer, 2005.

https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://www.google.com/patents/US2632058
https://www.google.com/patents/US2632058


240 REFERENCES

[113] A. Gupta, R. Cozza, and CK Lu. Market Share analysis: Mobile phones,
worldwide, 4Q13 and 2013. Gartner, 2014.

[114] Mordechai Guri, Assaf Kachlon, Ofer Hasson, Gabi Kedma, Yisroel Mirsky,
and Yuval Elovici. GSMem: Data Exfiltration from Air-Gapped Computers
over GSM Frequencies. In USENIX Security Symposium, pages 849–864,
2015.

[115] Jeyanthi Hall, Michel Barbeau, and Evangelos Kranakis. Radio frequency
fingerprinting for intrusion detection in wireless networks. IEEE Transac-
tions on Defendable and Secure Computing, 2005.

[116] Jinsong Han, Chen Qian, Panlong Yang, Dan Ma, Zhiping Jiang, Wei Xi,
and Jizhong Zhao. Geneprint: generic and accurate physical-layer identi-
fication for UHF RFID tags. IEEE/ACM Transactions on Networking, 24
(2):846–858, 2016.

[117] Changhua He and John C Mitchell. Analysis of the 802.11 i 4-way hand-
shake. In Proceedings of the 3rd ACM Workshop on Wireless Security,
pages 43–50. ACM, 2004.

[118] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their
Applications, 13(4):18–28, 1998.

[119] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural net-
work attribution methods for leakage analysis and symmetric key recov-
ery. Cryptology ePrint Archive, Report 2019/143, 2019. https://eprint.
iacr.org/2019/143.

[120] Guido R Hiertz, Dee Denteneer, Philips Lothar Stibor, Yunpeng Zang,
Xavier Pérez Costa, and Bernhard Walke. The IEEE 802.11 universe. IEEE
Communications Magazine, 48(1):62–70, 2010.

[121] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Ver-
bauwhede, and Joos Vandewalle. Machine learning in side-channel analysis:
a first study. Journal of Cryptographic Engineering, 1(4):293, 2011.

[122] Ken Hutchison. Wireless Intrusion Detection Systems. SANS Institute
InfoSec Reading Room, October 2004.

[123] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In International Conference on Smart Card Research
and Advanced Applications. Springer, 2013.

https://eprint.iacr.org/2019/143
https://eprint.iacr.org/2019/143


REFERENCES 241

[124] i-SCOOP. Wireless Internet of Things connectivity: LPWAN IoT forecasts
2017. https://www.i-scoop.eu/internet-of-things-guide/iot-
spending-2020/wireless-iot-lpwan-forecasts-predictions-2017/,
2017. Accessed: 10 October 2017.

[125] IBM. Shorten the runway to smarter aircraft with AI-enabled IoT
solutions. https://www.ibm.com/internet-of-things/explore-iot/
vehicles/aircraft, 2019. Accessed: 7 June 2019.

[126] IEEE Computer Society. Amendment 8: Medium Access Control (MAC)
Quality of Service Enhancements. IEEE 802.11e Standard, 2005.

[127] IEEE Computer Society. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE 802.11 Standard, September
2012.

[128] IEEE Computer Society. Amendment 5: Preassociation Discovery. IEEE
802.11aq Standard, June 2018.

[129] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Interna-
tional Conference on Machine Learning, pages 448–456, 2015.

[130] Suman Jana and Sneha K Kasera. On fast and accurate detection of unau-
thorized wireless access points using clock skews. IEEE Transactions on
Mobile Computing, 9(3):449–462, 2010.

[131] Ira Ray Jenkins, Rebecca Shapiro, Sergey Bratus, Travis Goodspeed, Ryan
Speers, and David Dowd. Speaking the Local Dialect: Exploiting differences
between IEEE 802.15. 4 Receivers with Commodity Radios for fingerprint-
ing, targeted attacks, and WIDS evasion. In Proceedings of the 7th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, pages
63–68, 2014.

[132] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4401–4410,
2019.

[133] Pantea Kiaei, Darius Mercadier, Pierre-Evariste Dagand, Karine Heyde-
mann, and Patrick Schaumont. SKIVA: Flexible and Modular Side-channel
and Fault Countermeasures. Cryptology ePrint Archive, Report 2019/756,
2019. https://eprint.iacr.org/2019/756.

https://www.i-scoop.eu/internet-of-things-guide/iot-spending-2020/wireless-iot-lpwan-forecasts-predictions-2017/
https://www.i-scoop.eu/internet-of-things-guide/iot-spending-2020/wireless-iot-lpwan-forecasts-predictions-2017/
https://www.ibm.com/internet-of-things/explore-iot/vehicles/aircraft
https://www.ibm.com/internet-of-things/explore-iot/vehicles/aircraft
https://eprint.iacr.org/2019/756


242 REFERENCES

[134] Mikkel Baun Kjærgaard. A taxonomy for radio location fingerprinting. In
Location-and Context-Awareness, pages 139–156. Springer, 2007.

[135] Mikkel Baun Kjærgaard, Mads Vering Krarup, Allan Stisen, Thor Siiger
Prentow, Henrik Blunck, Kaj Grønbæk, and Christian S Jensen. Indoor
positioning using Wi-Fi – how well is the problem understood? In Interna-
tional Conference on Indoor Positioning and Indoor Navigation, volume 28,
page 31st, 2013.

[136] Matt Knight. Reversing LoRa: Exploring Next-Generation Wire-
less. GRCon, 2016. URL https://static1.squarespace.com/
static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/
1464376943218/Reversing-Lora-Knight.pdf.

[137] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael Wiener, editor, Advances in Cryptology - CRYPTO, pages 388–
397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-
48405-9.

[138] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting speculative execution. arXiv
preprint arXiv:1801.01203, 2018.

[139] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote phys-
ical device fingerprinting. IEEE Transactions on Dependable and Secure
Computing, 2(2):93–108, 2005.

[140] Boris Köpf and David Basin. An information-theoretic model for adap-
tive side-channel attacks. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, pages 286–296. ACM, 2007.

[141] Memduh Köse, Selçuk Taşcıoğlu, and Ziya Telatar. The Effect of Transient
Detection Errors on RF Fingerprint Classification Performance. In Recent
Advances in Circuits, Systems and Automatic Control, pages 89–93, 2015.

[142] David Kotz, Tristan Henderson, and Chris McDonald. CRAWDAD: A
Community Resource for Archiving Wireless Data At Dartmouth. http:
//http://crawdad.org/. Accessed: March 20, 2017.

[143] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.
URL http://dl.acm.org/citation.cfm?id=2999134.2999257.

https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105215dc6c/1464376943218/Reversing-Lora-Knight.pdf
http://http://crawdad.org/
http://http://crawdad.org/
http://dl.acm.org/citation.cfm?id=2999134.2999257


REFERENCES 243

[144] Piotr Krysik. GNU Radio blocks and tools for receiving GSM transmis-
sions. https://github.com/ptrkrysik/gr-gsm, 2017. Accessed: 10 Oc-
tober 2017.

[145] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-
based classification for zero-shot visual object categorization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 36(3):453–465, 2014.

[146] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learn-
ing of new tasks. In Proceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2, AAAI’08, pages 646–651. AAAI Press,
2008. ISBN 978-1-57735-368-3. URL http://dl.acm.org/citation.cfm?
id=1620163.1620172.

[147] Larry Dignan. IBM launches Watson tools for agriculture.
https://www.zdnet.com/article/ibm-launches-watson-tools-
for-agriculture/, May 2019. Accessed: 7 June 2019.

[148] Laurent Butti. NetGear WG311v1 Wireless Driver 2.3.1 - 10 SSID Heap
Buffer Overflow Vulnerability. http://www.exploit-db.com/exploits/
29167/. Accessed: 2015.

[149] Quoc V. Le. A tutorial on deep learning part 1: nonlinear classifiers and
the backpropagation algorithm, December 2015.

[150] Yann LeCun and Yoshua Bengio. Convolutional networks for images,
speech, and time series. The Handbook of Brain Theory and Neural Net-
works, pages 255–258, 1995.

[151] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015.

[152] Liran Lerman, Romain Poussier, Olivier Markowitch, and François-
Xavier Standaert. Template attacks versus machine learning revisited
and the curse of dimensionality in side-channel analysis: extended ver-
sion. Journal of Cryptographic Engineering, Apr 2017. ISSN 2190-8516. doi:
10.1007/s13389-017-0162-9. URL https://doi.org/10.1007/s13389-
017-0162-9.

[153] Yuxia Lin and Vincent WS Wong. WSN01-1: frame aggregation and opti-
mal frame size adaptation for IEEE 802.11n WLANs. In Global Telecom-
munications Conference, pages 1–6. IEEE, 2006.

[154] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

https://github.com/ptrkrysik/gr-gsm
http://dl.acm.org/citation.cfm?id=1620163.1620172
http://dl.acm.org/citation.cfm?id=1620163.1620172
https://www.zdnet.com/article/ibm-launches-watson-tools-for-agriculture/
https://www.zdnet.com/article/ibm-launches-watson-tools-for-agriculture/
http://www.exploit-db.com/exploits/29167/
http://www.exploit-db.com/exploits/29167/
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9


244 REFERENCES

[155] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of wireless
indoor positioning techniques and systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 37(6):1067–1080,
2007.

[156] LoRa Alliance. LoRa Alliance home page. https://www.lora-alliance.
org/, 2019. Accessed: 3 June 2019.

[157] Yao Lu. Unsupervised Learning on Neural Network Outputs. CoRR,
abs/1506.00990, 2015. URL http://arxiv.org/abs/1506.00990.

[158] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlineari-
ties improve neural network acoustic models. In ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, 2013.

[159] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Inter-
national Conference on Security, Privacy, and Applied Cryptography En-
gineering. Springer, 2016.

[160] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer US, Boston, MA,
2007. ISBN 978-0-387-38162-6. doi: 10.1007/978-0-387-38162-6_5. URL
https://doi.org/10.1007/978-0-387-38162-6_5.

[161] Steve Mann and Simon Haykin. The Chirplet Transform: A Generalization
of Gabor’s Logon Transform. Vision Interface ’91, pages 205–212, June 3-7
1991. ISSN 0843-803X.

[162] Eduard Marin, Dave Singelée, Flavio D Garcia, Tom Chothia, Rik Willems,
and Bart Preneel. On the (in) security of the latest generation implantable
cardiac defibrillators and how to secure them. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, pages 226–236.
ACM, 2016.

[163] Moxie Marlinspike. Divide and Conquer: Cracking MS-CHAPv2. https:
//www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/,
2012.

[164] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont
Brown, Chadwick Riggins, Erik C Rye, and Dane Brown. A study of MAC
address randomization in mobile devices and when it fails. Proceedings on
Privacy Enhancing Technologies, 2017(4):365–383, 2017.

https://www.lora-alliance.org/
https://www.lora-alliance.org/
http://arxiv.org/abs/1506.00990
https://doi.org/10.1007/978-0-387-38162-6_5
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/


REFERENCES 245

[165] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. Profiling power
analysis attack based on MLP in DPA contest V4.2. In 39th International
Conference on Telecommunications and Signal Processing (TSP), pages
223–226. IEEE, 2016.

[166] Mariano Di Martino, Pieter Robyns, Peter Quax, and Wim Lamotte.
IUPTIS: A Practical, Cache-resistant Fingerprinting Technique for Dy-
namic Webpages. In Proceedings of the 14th International Conference
on Web Information Systems and Technologies - Volume 1: WEBIST,
pages 102–112. INSTICC, SciTePress, 2018. ISBN 978-989-758-324-7. doi:
10.5220/0007226501020112.

[167] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 145–167.
Springer, 2019.

[168] Célestin Matte, Mathieu Cunche, Franck Rousseau, and Mathy Vanhoef.
Defeating MAC address randomization through timing attacks. In Proceed-
ings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, pages 15–20. ACM, 2016.

[169] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Investigations
of power analysis attacks on smartcards. In Proceedings of the USENIX
Workshop on Smartcard Technology, pages 17–17. USENIX Association,
1999.

[170] Olivier Meynard, Denis Réal, Sylvain Guilley, Florent Flament, Jean-Luc
Danger, and Frédéric Valette. Characterization of the electromagnetic side
channel in frequency domain. In International Conference on Information
Security and Cryptology, pages 471–486. Springer, 2010.

[171] Marco Mezzavilla, Sourjya Dutta, Menglei Zhang, Mustafa Riza Akdeniz,
and Sundeep Rangan. 5G mmWave Module for the ns-3 Network Simulator.
In Proceedings of the 18th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, pages 283–290.
ACM, 2015.

[172] Microchip Technology Inc. Low-Power Long Range LoRa Technol-
ogy Transceiver Module. http://ww1.microchip.com/downloads/en/
DeviceDoc/50002346A.pdf, 2015. Accessed: 10 October 2017.

[173] Microsoft. Cryptobinding. http://msdn.microsoft.com/en-us/
library/cc238384.aspx.

http://ww1.microchip.com/downloads/en/DeviceDoc/50002346A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002346A.pdf
http://msdn.microsoft.com/en-us/library/cc238384.aspx
http://msdn.microsoft.com/en-us/library/cc238384.aspx


246 REFERENCES

[174] David P Montminy. Enhancing Electromagnetic Side-Channel Analysis in
an Operational Environment. PhD thesis, Air Force Institute of Technology,
2013.

[175] David P Montminy, Rusty O Baldwin, Michael A Temple, and Mark E
Oxley. Differential electromagnetic attacks on a 32-bit microprocessor using
software defined radios. IEEE Transactions on Information Forensics and
Security, 8(12):2101–2114, 2013.

[176] ABM Musa and Jakob Eriksson. Tracking unmodified smartphones using
Wi-Fi monitors. In Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems, pages 281–294. ACM, 2012.

[177] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. Single-stroke
language-agnostic keylogging using stereo-microphones and domain specific
machine learning. In Proceedings of the 7th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, pages 201–212. ACM, 2014.

[178] Christoph Neumann, Olivier Heen, and Stéphane Onno. An empirical study
of passive 802.11 device fingerprinting. In 32nd International Conference
on Distributed Computing Systems Workshops (ICDCSW), pages 593–602.
IEEE, 2012.

[179] Andrew Ng and Kian Katanforoosh. CS229 lecture notes: Deep Learning,
October 2018.

[180] Ludwig Nussel. The Evil Twin problem with WPA2-Enterprise. SUSE
Linux Products GmbH, 2010.

[181] Colin O’Flynn and Zhizhang David Chen. Side channel power analysis of
an AES-256 bootloader. In 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 750–755. IEEE, 2015.

[182] Tamoghna Ojha, Sudip Misra, and Narendra Singh Raghuwanshi. Wireless
sensor networks for agriculture: The state-of-the-art in practice and future
challenges. Computers and Electronics in Agriculture, 118:66–84, 2015.

[183] Aaron Van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
Recurrent Neural Networks. In Proceedings of The 33rd International Con-
ference on Machine Learning, pages 1747–1756, 2016.

[184] Michael Ossmann. Unambiguous Encapsulation. https://www.mail-
archive.com/langsec-discuss@mail.langsec.org/msg00000.html,
2013. Accessed: 2015.

https://www.mail-archive.com/langsec-discuss@mail.langsec.org/msg00000.html
https://www.mail-archive.com/langsec-discuss@mail.langsec.org/msg00000.html


REFERENCES 247

[185] Michael Ossmann and Dominic Spill. Unambiguous Encapsulation - Sepa-
rating Data and Signaling. Great Scott Gadgets Technical Report 2014-03-1,
2014.

[186] Colin O’Flynn and Zhizhang Chen. Power analysis attacks against IEEE
802.15.4 nodes. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 55–70. Springer, 2016.

[187] C David Page and Sriraam Natarajan. Encyclopedia of Machine Learning
and Data Mining. (2):1–24, 2014. doi: 10.1007/978-1-4899-7502-7. URL
http://link.springer.com/10.1007/978-1-4899-7502-7.

[188] Ashwin Palekar, Dan Simon, Joe Salowey, Hao Zhou, Glen Zorn, and
S. Josefsson. Protected EAP Protocol (PEAP). Work in Progress 6, IETF,
March 2003. URL http://tools.ietf.org/html/draft-josefsson-
pppext-eap-tls-eap-06.

[189] Ashwin Palekar, Dan Simon, Joe Salowey, Hao Zhou, Glen Zorn, and
S. Josefsson. Protected EAP Protocol (PEAP) Version 2. Work in
Progress 10, IETF, October 2004. URL http://tools.ietf.org/html/
draft-josefsson-pppext-eap-tls-eap-10.

[190] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pen-
nekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting at in-
ternet scale. In Proceedings of the 23rd Internet Society (ISOC) Network
and Distributed System Security Symposium (NDSS), 2016.

[191] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srinivasan Seshan,
and David Wetherall. 802.11 user fingerprinting. In Proceedings of the 13th
Annual ACM International Conference on Mobile Computing and Network-
ing, pages 99–110. ACM, 2007.

[192] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Well-
man. SoK: Security and privacy in machine learning. In IEEE European
Symposium on Security and Privacy (EuroS&P), pages 399–414. IEEE,
2018.

[193] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[194] Eldad Perahia. IEEE 802.11n development: history, process, and technol-
ogy. IEEE Communications Magazine, 46(7):48–55, 2008.

http://link.springer.com/10.1007/978-1-4899-7502-7
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-06
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-06
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-10
http://tools.ietf.org/html/draft-josefsson-pppext-eap-tls-eap-10


248 REFERENCES

[195] Stjepan Picek, Ioannis Petros Samiotis, Annelie Heuser, Jaehun Kim,
Shivam Bhasin, and Axel Legay. On the performance of convolutional neu-
ral networks for side-channel analysis. Cryptology ePrint Archive, Report
2018/004, 2018. https://eprint.iacr.org/2018/004.

[196] Pieter Robyns. MAC frame aggregation injection implementation. https:
//github.com/rpp0/aggr-inject, . Accessed: April 2015.

[197] Pieter Robyns. Packet trace of the Beacon injection experiment. http:
//research.edm.uhasselt.be/~probyns/traces/beacon_inj.tar.gz, .
Accessed: April 2015.

[198] Pieter Robyns. Packet trace of the remote host scan exper-
iment. http://research.edm.uhasselt.be/~probyns/traces/inj_
host_scan.tar.gz.tar.gz, . Accessed: April 2015.

[199] Thor S Prentow, Henrik Blunck, Kaj Gronbaek, and Mikkel B Kjærgaard.
Estimating common pedestrian routes through indoor path networks using
position traces. In IEEE 15th International Conference on Mobile Data
Management (MDM), volume 1, pages 43–48. IEEE, 2014.

[200] Emmanuel Prouff and Matthieu Rivain. A Generic Method for Secure
SBox Implementation. In International Workshop on Information Security
Applications, pages 227–244. Springer, 2007.

[201] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cé-
cile Dumas. Study of deep learning techniques for side-channel analysis
and introduction to ASCAD database. IACR Cryptology ePrint Archive,
page 53, 2018. URL http://eprint.iacr.org/2018/053.

[202] Pycom Ltd. LoPy 1.0 specification sheet. https://www.pycom.io/wp-
content/uploads/2016/09/lopySpecsheetFinal.pdf, 2016. Accessed:
10 January 2017.

[203] Qualcomm Atheros. Atheros ath9k_htc transmit path documen-
tation. https://github.com/qca/open-ath9k-htc-firmware/blob/
master/target_firmware/wlan/if_owl.c#L1343. Accessed: 2015.

[204] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In Proceedings
of the International Conference on Research in Smart Cards: Smart Card
Programming and Security, E-SMART ’01, pages 200–210, London, UK,
UK, 2001. Springer-Verlag. ISBN 3-540-42610-8. URL http://dl.acm.
org/citation.cfm?id=646803.705980.

https://eprint.iacr.org/2018/004
https://github.com/rpp0/aggr-inject
https://github.com/rpp0/aggr-inject
http://research.edm.uhasselt.be/~probyns/traces/beacon_inj.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/beacon_inj.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/inj_host_scan.tar.gz.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/inj_host_scan.tar.gz.tar.gz
http://eprint.iacr.org/2018/053
https://www.pycom.io/wp-content/uploads/2016/09/lopySpecsheetFinal.pdf
https://www.pycom.io/wp-content/uploads/2016/09/lopySpecsheetFinal.pdf
https://github.com/qca/open-ath9k-htc-firmware/blob/master/target_firmware/wlan/if_owl.c#L1343
https://github.com/qca/open-ath9k-htc-firmware/blob/master/target_firmware/wlan/if_owl.c#L1343
http://dl.acm.org/citation.cfm?id=646803.705980
http://dl.acm.org/citation.cfm?id=646803.705980


REFERENCES 249

[205] Benjamin W Ramsey, Michael A Temple, and Barry E Mullins. PHY
foundation for multi-factor ZigBee node authentication. In Global Commu-
nications Conference (GLOBECOM), pages 795–800. IEEE, 2012.

[206] Benjamin W. Ramsey, Tyler D. Stubbs, Barry E. Mullins, Michael A.
Temple, and Mark A. Buckner. Wireless infrastructure protection using
low-cost radio frequency fingerprinting receivers. International Journal of
Critical Infrastructure Protection, 8:27–39, 2015. ISSN 18745482. URL
http://dx.doi.org/10.1016/j.ijcip.2014.11.002.

[207] K. Bonne Rasmussen and S. Capkun. Implications of radio fingerprint-
ing on the security of sensor networks. In Third International Conference
on Security and Privacy in Communications Networks and the Workshops
- SecureComm, pages 331–340, Sept 2007. doi: 10.1109/SECCOM.2007.
4550352.

[208] Christian Rechberger and Elisabeth Oswald. Practical Template Attacks.
In Information Security Applications, pages 440–456, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-31815-6.

[209] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-time Object Detection. In Proceedings of
the IEEE Conference On Computer Vision and Pattern Recognition, pages
779–788, 2016.

[210] Saeed Ur Rehman, Kevin Sowerby, and Colin Coghill. RF fingerprint ex-
traction from the energy envelope of an instantaneous transient signal. In
Australian Communications Theory Workshop (AusCTW), pages 90–95.
IEEE, 2012.

[211] Reilly Dunn. IoT Applications in the Automotive Industry. https://www.
iotforall.com/iot-applications-automotive-industry/, November
2018. Accessed: 7 June 2019.

[212] KA Remley, CA Grosvenor, RT Johnk, DR Novotny, PD Hale, MD McKin-
ley, A Karygiannis, and E Antonakakis. Electromagnetic signatures of
WLAN cards and network security. In Proceedings of the Fifth IEEE In-
ternational Symposium on Signal Processing and Information Technology,
pages 484–488. IEEE, 2005.

[213] Matthieu Rivain. On the exact success rate of side channel analysis in the
Gaussian model. In International Workshop on Selected Areas in Cryptog-
raphy, pages 165–183. Springer, 2008.

http://dx.doi.org/10.1016/j.ijcip.2014.11.002
https://www.iotforall.com/iot-applications-automotive-industry/
https://www.iotforall.com/iot-applications-automotive-industry/


250 REFERENCES

[214] Pieter Robyns. Online Resource 1: pcap file of the stimulus frame response
conditions experiment. http://research.edm.uhasselt.be/~probyns/
mactracking/stimulus_experiment_results.pcap, 2016.

[215] Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lamotte. Exploiting
WPA2-enterprise vendor implementation weaknesses through challenge re-
sponse oracles. In Proceedings of the 7th ACM Conference on Security &
Privacy in Wireless and Mobile networks, pages 189–194. ACM, 2014.

[216] Pieter Robyns, Peter Quax, and Wim Lamotte. Injection attacks on 802.11
n MAC frame aggregation. In Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, page 13. ACM, 2015.

[217] Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lamotte. Assessing the
Impact of 802.11 Vulnerabilities Using Wicability. In Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’16, pages 217–218, New York, NY, USA, 2016. ACM. ISBN 978-1-
4503-4270-4. doi: 10.1145/2939918.2942421. URL http://doi.acm.org/
10.1145/2939918.2942421.

[218] Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lamotte. Noncoop-
erative 802.11 MAC layer fingerprinting and tracking of mobile devices.
Security and Communication Networks, 2017.

[219] Pieter Robyns, Eduard Marin, Wim Lamotte, Peter Quax, Dave Singelée,
and Bart Preneel. Physical-layer fingerprinting of LoRa devices using super-
vised and zero-shot learning. In Proceedings of the 10th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, pages 58–63. ACM,
2017.

[220] Pieter Robyns, Peter Quax, Wim Lamotte, and William Thenaers. A Multi-
Channel Software Decoder for the LoRa Modulation Scheme. In Proceedings
of the 3rd International Conference on Internet of Things, Big Data and
Security. SCITEPRESS, 2018.

[221] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving CEMA using
Correlation Optimization. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 1–24, 2019.

[222] Volker Roth, Wolfgang Polak, Eleanor Rieffel, and Thea Turner. Simple
and Effective Defense Against Evil Twin Access Points. In Proceedings of
the First ACM Conference on Wireless Network Security, WiSec ’08, pages
220–235, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-814-5. doi:
10.1145/1352533.1352569. URL http://doi.acm.org/10.1145/1352533.
1352569.

http://research.edm.uhasselt.be/~probyns/mactracking/stimulus_experiment_results.pcap
http://research.edm.uhasselt.be/~probyns/mactracking/stimulus_experiment_results.pcap
http://doi.acm.org/10.1145/2939918.2942421
http://doi.acm.org/10.1145/2939918.2942421
http://doi.acm.org/10.1145/1352533.1352569
http://doi.acm.org/10.1145/1352533.1352569


REFERENCES 251

[223] RTL-SDRangelove. Github project page. https://github.com/
hexameron/rtl-sdrangelove, 2017. Accessed: 10 October 2017.

[224] Ehsan Saeedi, Md Selim Hossain, and Yinan Kong. Side channel analysis
of an elliptic curve crypto-system based on multi-class classification. In 6th
International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–7. IEEE, 2015.

[225] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43–49, February 1978. doi: 10.1109/TASSP.1978.
1163055.

[226] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[227] Len Sassaman, Meredith L Patterson, Sergey Bratus, and Michael E Lo-
casto. Security applications of formal language theory. IEEE Systems
Journal, 7(3):489–500, 2013.

[228] Harshad Sathaye, Domien Schepers, Aanjhan Ranganathan, and Guevara
Noubir. Wireless attacks on aircraft instrument landing systems. In
28th USENIX Security Symposium (USENIX Security 19), pages 357–372,
Santa Clara, CA, Aug 2019. USENIX Association. ISBN 978-1-939133-
06-9. URL https://www.usenix.org/conference/usenixsecurity19/
presentation/sathaye.

[229] Oliver Schimmel, Paul Duplys, Eberhard Boehl, Jan Hayek, Robert Bosch,
and Wolfgang Rosenstiel. Correlation power analysis in frequency domain.
In International Workshop on Constructive Side-Channel Analysis and Se-
cure Design (COSADE), 2010.

[230] Timothy M Schmidl and Donald C Cox. Robust frequency and timing
synchronization for OFDM. IEEE Transactions on Communications, 45
(12):1613–1621, 1997.

[231] Bruce Schneier, Mudge, and David Wagner. Cryptanalysis of Microsoft’s
PPTP Authentication Extensions. CQRE ’99, October 1999.

[232] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
815–823, 2015.

https://github.com/hexameron/rtl-sdrangelove
https://github.com/hexameron/rtl-sdrangelove
https://www.usenix.org/conference/usenixsecurity19/presentation/sathaye
https://www.usenix.org/conference/usenixsecurity19/presentation/sathaye


252 REFERENCES

[233] O.B.A. Seller and N. Sornin. Low power long range transmitter, aug
2014. URL https://www.google.com/patents/EP2763321A1?cl=en. EP
Patent App. EP20,130,154,071.

[234] Semtech. Semtech Acquires Wireless Long Range IP Provider Cy-
cleo. http://investors.semtech.com/releasedetail.cfm?ReleaseID=
655335, March 2012. Accessed: 9 October 2017.

[235] Semtech. SX1272/73 - 860 MHz to 1020 MHz Low Power Long Range
Transceiver Datasheet. http://www.semtech.com/images/datasheet/
sx1272.pdf, 2015. Accessed: 10 October 2017.

[236] Semtech. LoRa Modulation Basics. http://www.semtech.com/images/
datasheet/an1200.22.pdf, 2015. Accessed: 9 October 2017.

[237] Semtech. LoRa overview page. https://www.semtech.com/lora, 2019.
Accessed: 3 July 2019.

[238] Adi Shamir and Eran Tromer. Acoustic cryptanalysis. presentation avail-
able from http://www.wisdom.weizmann.ac.il/~tromer, 2004.

[239] Jonathon Shlens. A tutorial on principal component analysis. arXiv
preprint arXiv:1404.1100, 2014.

[240] Ajay Shrestha and Ausif Mahmood. Review of deep learning algorithms
and architectures. IEEE Access, 7:53040–53065, 2019.

[241] Sigfox. Sigfox home page. https://www.sigfox.com/, 2019. Accessed: 3
June 2019.

[242] Bertrik Sikken. Decoding LoRa. https://revspace.nl/DecodingLora,
2017. Accessed: 10 October 2017.

[243] Raul Siles. EAP dumb-down attack. In RootedCON 2013, pages 27–28.
DinoSec, 2013.

[244] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside con-
volutional networks: Visualising image classification models and saliency
maps, 2013.

[245] Karen Simonyan, Sander Dieleman, Andrew Senior, and Alex Graves.
WaveNet: A Generative Model for Raw Audio. pages 1–15, 2016.

https://www.google.com/patents/EP2763321A1?cl=en
http://investors.semtech.com/releasedetail.cfm?ReleaseID=655335
http://investors.semtech.com/releasedetail.cfm?ReleaseID=655335
http://www.semtech.com/images/datasheet/sx1272.pdf
http://www.semtech.com/images/datasheet/sx1272.pdf
http://www.semtech.com/images/datasheet/an1200.22.pdf
http://www.semtech.com/images/datasheet/an1200.22.pdf
https://www.semtech.com/lora
http://www.wisdom.weizmann.ac.il/~tromer
https://www.sigfox.com/
https://revspace.nl/DecodingLora


REFERENCES 253

[246] Arvind Singh, Monodeep Kar, Jong Hwan Ko, and Saibal Mukhopadhyay.
Exploring power attack protection of resource constrained encryption en-
gines using integrated low-drop-out regulators. In IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), pages
134–139. IEEE, 2015.

[247] George Sklivanitis, Adam Gannon, Stella N Batalama, and Dimitris A
Pados. Addressing next-generation wireless challenges with commercial
software-defined radio platforms. IEEE Communications Magazine, 54(1):
59–67, 2016.

[248] Dionysios Skordoulis, Qiang Ni, Hsiao-Hwa Chen, Adrian P Stephens,
Changwen Liu, and Abbas Jamalipour. IEEE 802.11 n MAC frame ag-
gregation mechanisms for next-generation high-throughput WLANs. IEEE
Wireless Communications, 15(1):40–47, 2008.

[249] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng.
Zero-shot learning through cross-modal transfer. In Advances in Neural
Information Processing Systems, pages 935–943, 2013.

[250] Robin Sommer and Vern Paxson. Outside the closed world: on using ma-
chine learning for network intrusion detection. In IEEE Symposium on
Security & Privacy, pages 305–316. IEEE, 2010.

[251] N Sornin, M Luis, T Eirich, T Kramp, and O Hersent. LoRaWAN™ Spec-
ifications. LoRa™ Alliance, 2015.

[252] François-Xavier Standaert. How (not) to Use Welch’s T-test in Side-
Channel Security Evaluations. In International Conference on Smart Card
Research and Advanced Applications, pages 65–79. Springer, 2018.

[253] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks. In Advances
in Cryptology - EUROCRYPT, pages 443–461, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. ISBN 978-3-642-01001-9.

[254] Stratistics Market Research Consulting Pvt Ltd. Wireless Connectivity -
Global Market Outlook (2017-2023). https://www.researchandmarkets.
com/research/9g7hcj/global_wireless, 2018. Accessed: 29 April 2019.

[255] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

https://www.researchandmarkets.com/research/9g7hcj/global_wireless
https://www.researchandmarkets.com/research/9g7hcj/global_wireless


254 REFERENCES

[256] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic.
Robust smartphone app identification via encrypted network traffic anal-
ysis. IEEE Transactions on Information Forensics and Security, 13(1):
63–78, 2017.

[257] The Linux Foundation. TX A-MPDU aggregation. https://www.kernel.
org/doc/htmldocs/80211/aggregation.html. Accessed: 2015.

[258] The Radicati Group. Forecast number of mobile users world-
wide from 2019 to 2023 (in billions). Statista - The Statis-
tics Portal. https://www.statista.com/statistics/218984/number-
of-global-mobile-users-since-2010/, 2019. Accessed: 3 June 2019.

[259] The Things Network. Gateway coverage map. https://www.
thethingsnetwork.org/map, 2017. Accessed: 10 October 2017.

[260] Sébastien Tiran, Sébastien Ordas, Yannick Teglia, Michel Agoyan, and
Philippe Maurine. A model of the leakage in the frequency domain and
its application to CA and DA. Journal of Cryptographic Engineering, 4(3):
197–212, 2014.

[261] C Tiu. A New Frequency-Based Side Channel Attack for Embedded Sys-
tems. Master’s thesis, University of Waterloo, 2005.

[262] O. Ureten and N. Serinken. Wireless security through RF fingerprinting.
Canadian Journal of Electrical and Computer Engineering, 32(1):27–33,
2007. ISSN 0840-8688. doi: 10.1109/CJECE.2007.364330.

[263] Oktay Ureten and Nur Serinken. Wireless security through RF fingerprint-
ing. Canadian Journal of Electrical and Computer Engineering, 32(1):
27–33, 2007.

[264] Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen.
Request and conquer: Exposing cross-origin resource size. In 25th USENIX
Security Symposium (USENIX Security 16), pages 447–462, 2016.

[265] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Im-
proving differential power analysis by elastic alignment. In Aggelos Kiayias,
editor, Topics in Cryptology – CT-RSA, pages 104–119, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. ISBN 978-3-642-19074-2.

[266] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi attacks using com-
modity hardware. In Proceedings of the 30th Annual Computer Security
Applications Conference, pages 256–265. ACM, 2014.

https://www.kernel.org/doc/htmldocs/80211/aggregation.html
https://www.kernel.org/doc/htmldocs/80211/aggregation.html
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.thethingsnetwork.org/map
https://www.thethingsnetwork.org/map


REFERENCES 255

[267] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the Dragonfly
handshake of WPA3 and EAP-pwd. In IEEE Symposium on Security &
Privacy. IEEE, 2020.

[268] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S Cardoso,
and Frank Piessens. Why MAC Address Randomization is not Enough: An
Analysis of Wi-Fi Network Discovery Mechanisms. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security,
pages 413–424. ACM, 2016.

[269] Mathy Vanhoef, Nehru Bhandaru, Thomas Derham, Ido Ouzieli, and Frank
Piessens. Operating Channel Validation: Preventing Multi-Channel Man-
in-the-Middle Attacks Against Protected Wi-Fi Networks. In Proceedings
of the 11th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, pages 34–39. ACM, 2018.

[270] Angelos Vlavianos, Lap Kong Law, Ioannis Broustis, Srikanth V Krish-
namurthy, and Michalis Faloutsos. Assessing link quality in IEEE 802.11
wireless networks: Which is the right metric? In Personal, Indoor and
Mobile Radio Communications, pages 1–6, 2008.

[271] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara Noubir. Fingerprint-
ing Wi-Fi Devices Using Software Defined Radios. In Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless and Mobile Networks,
pages 3–14, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4270-4. doi:
10.1145/2939918.2939936. URL http://doi.acm.org/10.1145/2939918.
2939936.

[272] Martin Vuagnoux and Sylvain Pasini. Compromising Electromagnetic Ema-
nations of Wired and Wireless Keyboards. In USENIX security symposium,
pages 1–16, 2009.

[273] K Wang, M Faulkner, J Singh, and I Tolochko. Timing synchronization for
802.11 a WLANs under multipath channels. In Australasian Telecommu-
nication Networks and Applications Conference (ATNAC), 2003.

[274] Weightless. Weightless home page. http://www.weightless.org/, 2019.
Accessed: 3 June 2019.

[275] Wi-Fi Alliance. Wi-Fi CERTIFIED Passpoint. https://www.wi-fi.org/
discover-wi-fi/wi-fi-certified-passpoint, . Accessed: January 27,
2016.

http://doi.acm.org/10.1145/2939918.2939936
http://doi.acm.org/10.1145/2939918.2939936
http://www.weightless.org/
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint


256 REFERENCES

[276] Wi-Fi Alliance. Product Finder search results. https://www.wi-
fi.org/product-finder-results?sort_by=default&sort_order=
desc&categories=4&capabilities=1, . Accessed: February 9, 2016.

[277] Wi-Fi Alliance. Wi-Fi 6 home page. https://www.wi-fi.org/discover-
wi-fi/wi-fi-certified-6, 2019. Accessed: 3 June 2019.

[278] Wi-Fi Alliance. Wi-Fi HaLow home page. https://www.wi-fi.org/
discover-wi-fi/wi-fi-halow, 2019. Accessed: 3 June 2019.

[279] Wi-Fi Alliance Technical Committee, P2P Task Group. Wi-Fi Peer-to-Peer
(P2P) v1.5. Technical Specification, Wi-Fi Alliance, August 2014.

[280] WiGLE.net. Statistics. https://wigle.net/stats. Accessed: March 9,
2016.

[281] Wireless Geographic Logging Database. Wi-Fi network statistics. https:
//wigle.net/stats. Accessed: 2015.

[282] Joshua Wright. FreeRADIUS-WPE. http://www.willhackforsushi.
com/?page_id=37, 2008.

[283] R. Yamasaki, A. Ogino, T. Tamaki, T. Uta, N. Matsuzawa, and T. Kato.
TDOA location system for IEEE 802.11b WLAN. In IEEE Wireless
Communications and Networking Conference, volume 4, pages 2338–2343,
March 2005.

[284] Zhimin Yang, Adam C. Champion, Boxuan Gu, Xiaole Bai, and Dong
Xuan. Link-layer Protection in 802.11I WLANS with Dummy Authentica-
tion. In Proceedings of the Second ACM Conference on Wireless Net-
work Security, WiSec ’09, pages 131–138, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-460-7. doi: 10.1145/1514274.1514294. URL
http://doi.acm.org/10.1145/1514274.1514294.

[285] Josh Yavor. The BYOD PEAP Show. In DefCon 21. iSEC Partners, 2013.

[286] Xin Ye. Side Channel Leakage Analysis - Detection, Exploitation and
Quantification. 2015.

[287] Rama K Yedavalli and Rohit K Belapurkar. Application of wireless sensor
networks to aircraft control and health management systems. Journal of
Control Theory and Applications, 9(1):28–33, 2011.

[288] Jihwang Yeo and Ashok Agrawala. Packet error model for the IEEE 802.11
MAC protocol. In Personal, Indoor and Mobile Radio Communications,
volume 2, pages 1722–1726. IEEE, 2003.

https://www.wi-fi.org/product-finder-results?sort_by=default&sort_order=desc&categories=4&capabilities=1
https://www.wi-fi.org/product-finder-results?sort_by=default&sort_order=desc&categories=4&capabilities=1
https://www.wi-fi.org/product-finder-results?sort_by=default&sort_order=desc&categories=4&capabilities=1
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6
https://www.wi-fi.org/discover-wi-fi/wi-fi-halow
https://www.wi-fi.org/discover-wi-fi/wi-fi-halow
https://wigle.net/stats
https://wigle.net/stats
https://wigle.net/stats
http://www.willhackforsushi.com/?page_id=37
http://www.willhackforsushi.com/?page_id=37
http://doi.acm.org/10.1145/1514274.1514294


REFERENCES 257

[289] Jong-Hoon Youn, Hesham Ali, Hamid Sharif, Jitender Deogun, Jason Uher,
and Steven H Hinrichs. WLAN-based real-time asset tracking system in
healthcare environments. In Third IEEE International Conference on Wire-
less and Mobile Computing, Networking and Communications, page 71.
IEEE, 2007.

[290] YongBin Zhou and DengGuo Feng. Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing.
IACR Cryptology ePrint Archive, page 388, 2005.

[291] G. Zorn. Microsoft PPP CHAP Extensions, Version 2. RFC 2759, IETF,
January 2000. URL http://tools.ietf.org/html/rfc2759.

[292] G. Zorn and S. Cobb. Microsoft PPP CHAP Extensions. RFC 2443, IETF,
October 1998. URL http://tools.ietf.org/html/rfc2433.

http://tools.ietf.org/html/rfc2759
http://tools.ietf.org/html/rfc2433

	Introduction
	Motivation
	Problem statement and research goals
	Contributions
	Thesis structure

	I Preliminaries
	Side-Channel Analysis
	Types of side channels
	EM side-channel leakage
	Leakage detection and POI selection
	Mutual information
	TVLA
	Principal component analysis
	Sum of differences

	Signal alignment
	Trigger signals
	Cross-correlation
	Autocorrelation
	Dynamic time warping

	Attack methodologies
	Simple Power Analysis
	Differential Power Analysis
	Template attacks

	Comparison of attacks
	Success rate
	Guessing entropy


	Machine Learning and Deep Learning
	Notation and terminology
	Supervised learning
	Neural network architectures
	Multi-Layer Perceptron
	Convolutional Neural Network

	Optimization of neural networks
	Loss and cost functions
	Parameter tuning
	Saliency maps



	II Explicit Information Leakage in Wireless Communication
	Exploiting WPA2-Enterprise Vendor Implementation Weaknesses through Challenge Response Oracles
	Introduction
	LEAP and PEAP vulnerabilities
	Practical LEAP relay attack
	Preconditions
	Case study: Apple devices
	Test results

	Mitigation
	Client certificates
	iPhone Configuration Utility
	Cryptobinding
	Intrusion detection
	Rogue AP mitigation

	Related work
	Chapter conclusions

	Injection Attacks on 802.11n MAC Frame Aggregation
	Introduction
	Related work and contributions
	Background
	PHY features
	MAC features

	Frame injection attack
	Experimental setup
	Injection method
	Applicability
	Optimal aggregation triggering
	A-MSDU injection
	Attack scenarios
	Success rate

	Defensive measures
	Encryption
	Disable A-MPDU frame aggregation
	Drop corrupted A-MPDUs
	LangSec stacks
	Modulation switch
	Deep packet inspection
	Comparison

	Chapter conclusions

	Non-cooperative 802.11 MAC-layer Fingerprinting and Tracking of Mobile Devices
	Introduction
	Background
	Identifiers and fingerprinting
	PHY-layer fingerprinting
	MAC layer fingerprinting
	Per-bit MAC header analysis

	Transmission frequency
	Instigating transmissions
	Beacon frames
	Control frames
	Action frames
	Stimulus frame candidates

	Evaluation
	Attacker model
	Fingerprinting experiments
	Transmission rate experiments
	Practical location tracking

	Countermeasures
	Related work
	Chapter conclusions


	III Implicit Information Leakage in Wireless Communication
	A Multi-Channel Software Decoder for the LoRa Modulation Scheme
	Introduction
	LoRa PHY layer
	Modulation
	Interleaving
	Coding
	Frame structure

	Software demodulator
	Detection and synchronization
	Demodulation
	Decoding
	Clock drift correction

	Evaluation
	Compatibility
	Accuracy

	Related work
	Chapter conclusions

	Physical-Layer Fingerprinting of LoRa devices using Supervised and Zero-Shot Learning
	Introduction
	Fingerprinting LoRa on the PHY layer
	Features
	Classification
	Learning models

	Implementation and results
	Laboratory setup
	Signal acquisition
	Classifier training
	Fingerprinting experiments

	Discussion and implications
	Related work
	Chapter conclusions

	Improving CEMA using Correlation Optimization
	Introduction
	Background
	Notation and terminology
	Advanced Encryption Standard
	Correlation Electromagnetic Analysis of AES
	Machine Learning and Deep Learning attacks on AES
	The ASCAD dataset

	Correlation Optimization
	The correlation loss function
	Evaluation methodology
	Time-domain CO
	Frequency-domain CO
	Low-cost CEMA
	Discussion

	Related work
	Chapter conclusions


	IV Conclusions and Future Work
	Conclusions
	Future Work

	V Appendices
	Nederlandse Samenvatting
	Public Datasets and Code
	Scientific Contributions and Publications
	Non-academic Publications and Press
	References


