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ABSTRACT

Determining which operations are being executed by a black-box
device is an important challenge to tackle in reverse engineering.
Furthermore, in order to perform a successful side-channel anal-
ysis (SCA) of said operations, their precise timing must be deter-
mined. In this paper, we tackle these two challenges in context
of an electromagnetic (EM) analysis of a NodeMCU Amica IoT
device. More specifically, we propose a convolutional neural net-
work (CNN) architecture that is designed to classify operations
performed by the NodeMCU out of a set of 8 possible operations,
namely OpenSSL AES, native AES, TinyAES, OpenSSL DES, SHA1-
PRF, HMAC-SHA1, SHA1, and SHA1Transform. In addition, we
use the same architecture to predict the start and end times of the
operation, thereby removing the need for firmware modifications
or manual triggers in SCA. Our approach is evaluated using a 66
GB dataset containing 69,632 complex traces of EM leakage, cap-
tured with a USRP B210 software defined radio. The best variant of
our methodology achieves a classification accuracy of 96.47%, and
is able to predict the start and end times of the operation within 34
ps of the ground truth on average. We compare our methodology
to classical template matching, and provide our open-source im-
plementation and datasets to the community so that the achieved
results can be reproduced.

CCS CONCEPTS

« Security and privacy — Hardware reverse engineering;
Cryptanalysis and other attacks; - Computing methodolo-
gies — Neural networks.
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1 INTRODUCTION

In Side-Channel Analysis (SCA), physical effects caused by the im-
plementation of a (cryptographic) operation are analyzed in order
to determine whether or how they leak information to an adver-
sary [39]. Examples of such physical effects that can leak infor-
mation include timing [16], temperature [4], electromagnetic (EM)
radiation [11, 28], power consumption [15, 25], and sound [32]. Par-
ticularly in EM analysis, the EM radiation emitted by a device dur-
ing computations is considered. Previous works have shown that
such radiation can indeed leak information about, for example, the
key being used in a cryptographic system [12].

To successfully perform an EM analysis, several challenges must
be tacked: (i) the adversary must correctly position a probe near a
leaking region of interest, (ii) the adversary must measure the EM
emanations of the system at an adequate sampling rate, (iii) the
operation of interest must be localized in the performed measure-
ment using e.g. a trigger [5, 7, 22, 34], (iv) the measurements must
be aligned in time, for example by applying a cross-correlation
or Sum of Differences (SOD) metric [5, 23, 40], and (v) the mea-
surements must be processed and attacked using a methodology
that is tailored to the targeted cipher. For instance, a Simple Elec-
tromagnetic Analysis (SEMA) is generally applied to algorithms
such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), whereas Differential Electromag-
netic Analysis (DEMA) and Correlation Electromagnetic Analysis
(CEMA) attacks are common for algorithms such as Data Encryp-
tion Standard (DES) and Advanced Encryption Standard (AES). The
adversary must therefore know which algorithm is performed on
the device. In a black-box attack scenario, this is generally not the
case, since the adversary can only observe the inputs and outputs.
For instance, in context of block ciphers, note that the output of a
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secure block cipher should be indistinguishable from other block
ciphers of the same block size.

In this paper, we propose an approach that can be applied in
practice to solve two of the challenges presented above. More specif-
ically, we propose a methodology to (i) identify which operations
are performed by a device, based only on the EM radiation it emits,
and (ii) to localize the start and end times of this algorithm within
the EM trace. Our methodology thereby allows to extract cryp-
tographic operations for EM analysis without requiring firmware
modifications that incorporate a “trigger” for the operations, and
to identify the usage of potentially vulnerable implementations in
black-box devices under test. For instance, by probing a black-box
device during the execution of an unknown hashing function, our
methodology could be applied to determine that SHA-1 is being
used, which is considered vulnerable [19].

To achieve this, we developed a deep Convolutional Neural Net-
work (CNN) architecture based on the SCA architecture proposed
by Benadjila et al. [27]. Our architecture supports long input EM
traces (131,072 samples), and is able to predict classes of operations
along with their start and end times in the trace in real time. Our
methodology can thus be applied in the domain of SCA as well as
the domain of forensics, e.g. when the operations performed by a
black-box device must be reverse engineered [25].

Our methodology is compared to template matching using a
training dataset of 65,536 random operations and test dataset of
4,096 random operations performed on a NodeMCU Amica device.
This dataset was captured with a USRP B210 and is made pub-
licly available. A single random operation in the dataset can come
from the following set of possibilities: OpenSSL AES, native AES,
TinyAES, OpenSSL DES, SHA1-PRF, HMAC-SHA1, SHA1, SHA1-
Transform and no operation. These operations are commonly im-
plemented on Internet-of-Things (IoT) devices. For example, SHA1-
PREF is typically called during a WPA2 4-Way Handshake. Finally,
we perform an experiment where the EM emissions of the NodeMCU
are captured while it is connecting to an Access Point (AP).

In summary, our paper brings the following novel contributions:

e We provide a 66 GB dataset containing 69,632 complex traces
of EM emissions from the above operations, performed at
random on a NodeMCU device. Labeled bounding boxes are
provided for 768 of these traces. In addition, the dataset in-
cludes 3 full EM traces of the NodeMCU performing a Wi-Fi
connection procedure to a hostapd AP.

e We propose a CNN architecture to classify which random
operation was performed by the NodeMCU based on a sin-
gle EM leakage measurement. Furthermore, our CNN simul-
taneously predicts the location of the operation within the
trace with high accuracy. We show that we can identify dif-
ferent implementations of the same algorithm (e.g. OpenSSL
AES vs TinyAES), and that this classification can be per-
formed in real time. Furthermore, we open source the tools
used for both capture and analysis.

e We evaluate our methodolgy on the acquired datasets and
compare to classic instananeous amplitude-based and Short-
Time Fourier Transform (STFT)-based template matching.
The rationale for selecting these two features as a basis for
template matching will be explained in Section 3.5.
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The structure of this paper is as follows: in Section 2, we discuss
related works. Section 3 details our experimental setup, method-
ology for capturing EM traces, and adversarial model. The experi-
ments we performed and the results thereof are discussed in Sec-
tion 4. The implications, limitations, and pointers for future work
are then discussed in Section 5. Finally, our conclusions from this
study are presented in Section 6.

2 RELATED WORK

One of the first works to mention the possibility of using side chan-
nels to reverse engineer operations performed by a device is the
seminal work on Differential Power Analysis (DPA) presented by
Kocher et al. [15]. Several works followed in subsequent years that
put this idea into practice on low-end devices. Specifically, Eisen-
barth et al. propose a methodology to obtain the program code
running on a microcontroller by evaluating its power consump-
tion [8]. They build 41 templates of individual instruction cycles
and evaluate their approach on a PIC16F687, achieving a recogni-
tion rate of 70%. A more recent approach to template individual
instructions was presented by Park et al [25]. Their methodology
uses Kullback-Leibler divergence and PCA to extract features from
a Wavelet transform of power measurements from an IoT device
with an ATMega328P processor. These features are subsequently
used to train a Machine Learning (ML)-based classifier.

In context of EM side channels, Balasch et al. propose an ap-
proach to identify operations performed by hardware trojans on
an FPGA [3]. They achieve this by applying Welch’s two-tailed T-
test to distinguish between a compromised device and uncompro-
mised (Golden) device. One of the first works targeting individual
high-level operations on more complex CPUs is the work by Stone
et al. [34]. They use an oscilloscope sampling at 1-10 GS/s to con-
struct templates of individial instructions by aligning and averag-
ing a set of 1,500 EM leakage signals from a MSP430F5529 device,
and perform matched filtering using cross-correlation to classify
them. Their methodology is able to distinguish 6 operand address-
ing modes at 93.22% accuracy, and performs slightly better than
random guessing for distinguishing between different operations.

A recently published work that is conceptually most similar to
ours is the work presented by Sayakkara et al. [31]. They propose
an approach to identify cryptographic operations performed on a
Raspberry Pi 3B+ and Arduino Leonardo using a HackRF Software
Defined Radio (SDR). Their methodology utilizes a Multi-Layer Per-
ceptron (MLP) classifier to classify 3 operations: DES, AES-128 and
AES-256, and achieves over 82% classification accuracy. However,
there are a number of important differences compared to our ap-
proach. First, they repeatedly perform these operations by encrypt-
ing a large file, and use 500 bins from a 200,000-point Fast Fourier
Transform (FFT) as inputs to their MLP network. As such, their
methodology can only detect operations that are performed con-
tinuously for an extended duration, rather than individual opera-
tions. Second, they do not consider the extraction of start and end
times of individual operations from the EM trace. In our approach,
both of these limitations are removed.

Finally, in recent years, several works that use ML classifiers
have been published in the domain of RF fingerprinting, where
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Host

1. Begin Protocol (“wifi.emcap()”)
2. Target Ready (0x10)
3. Ready ACK (0x10)
4. Operation Request
5. Operation Supported ACK (0x11)
) 6. Capture Started (0x11)

Target

Repeat

7. Operation Response

Figure 1: Overview of the serial-over-USB protocol per-
formed between the host machine and NodeMCU to trigger
the execution of operations.

radio waves are used as features for the identification of devices or
modulation schemes, rather than side-channel leakage [20, 24, 30].

3 METHODOLOGY

3.1 Experimental setup

The Device Under Test (DUT) used for the experiments discussed
in this section is a single NodeMCU Amica device, which features
the Espressif ESP8266EX Wi-Fi module. This module is widely used
in IoT appliances such as smart light bulbs, meters, and sensors.
The ESP8266EX features a Tensilica L106 32-bit RISC processor,
which has a default clock speed of 80 MHz (overclockable to 160
MHz) [9]. To improve the SNR of leaked EM emissions, we re-
moved the metal shielding cap of the device prior to analysis.

For capturing EM traces, we used a TekBox TBPS01 EM probe
with a 40 dB low-noise amplifier connected to a Universal Soft-
ware Radio Peripheral (USRP) B210 [10]. The USRP is connected
over USB3 to a desktop workstation with an Intel Xeon CPU E5-
1620 v2 @ 3.70GHz CPU and NVIDIA GeForce GTX 970 GPU. The
probe is positioned closely above the crystal oscillator and IC of
the NodeMCU, and is kept in place using adhesive tape.

3.2 Custom firmware and protocol

To make the acquistition of a clean dataset of EM traces more
tractable, we developed custom firmware for the profiling device
that allows it to interact with a host machine. This firmware is
based on nodemcu-firmware, an open source Lua-based interac-
tive firmware for ESP8266 and related chipsets [35]. The custom
firmware implements a simple protocol that is performed over USB
prior to each operation measurement. It allows the host to instruct
which operation the device must perform, as well as which data
must be provided as input. For example, in case of a cipher, the
host can specify the key and plaintext to use. Figure 1 shows the
messages exchanged during the protocol.

The host machine initiates the protocol and sends commands
to the NodeMCU to perform random operations with random in-
puts. This executed operation can come from the following set:
OpenSSL AES, native AES, TinyAES, OpenSSL DES, SHA1-PRF,
HMAC-SHA1, SHA1, SHA1Transform, and “no operation”. Of these
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operations, native AES, SHA1-PRF, HMAC-SHA1, SHA1, and SHA1-
Transform are implemented by default in the ROM of the NodeMCU,
whereas OpenSSL AES, TinyAES, and OpenSSL DES were added to
the firmware of the device.

To mitigate effects related to caching, we warm up the cache
by executing the operation once before the Operation Supported
ACK message is sent, which is before the capture itself has started.
This effect will be discussed in more detail in Section 5. After the
warm-up and when the host machine receives the Operation Sup-
ported ACK packet, the USRP is tuned to a center frequency of 240
MHz, which corresponds to the third harmonic of the CPU clock,
and capture is started. In our experimental setup, we empirically
determined that this frequency was least influenced by transmis-
sions from external radios. It is important to note that EM leakage
produced by the processing of messages 6 and 7 will consequently
be present in the measurements. A solution to this issue will be
discussed in Section 4.6.

3.3 Capture and storage

For our experiments, we captured 3 datasets of EM emanations
that were recorded during random-input executions of the oper-
ations listed above. To this end, we used the GNU Radio frame-
work [13] with the USRP sampling at the maximum sample rate
of 56 MS/s. Each dataset contains a separately recorded “test set”,
which is used for the evaluation of our experiments. The “random
label” dataset contains 69,632 traces of random operations, total-
ing 60.9 GB. The “random label with bounding boxes” dataset is
comprised of 768 manually labeled traces from the “random label”
dataset. Finally, the “Wi-Fi connect” dataset consists of 3 traces of
a complete Wi-Fi connection procedure from the NodeMCU to a
hostapd AP, totaling 5.1 GB of data. The storage format and struc-
ture of the datasets is described in Appendix A.1.

3.4 Adversarial model

Recall from the introduction of this paper that the goal of the ad-
versary is to capture EM emissions from the DUT and determine
which operation out of a set of known operations is being per-
formed at a particular point in time, based on a single trace. Hence,
we assume the adversary is in possession of an identical device,
which can be used to create EM templates for the operation of in-
terest.

In our experiments, we further distinguish between two types
of adversaries:

e Grey-box adversary: This adversary has a coarse notion
of when operations of interest will take place on the DUT.
They can trigger these operations on demand through a com-
munication channel and measure EM emissions during this
period. For example, the adversary could achieve this by
sending a Wi-Fi frame or by modifying the firmware to ex-
ternally trigger the unkown operation via GPIO or a serial
communication channel. The goal of the adversary is then
to determine the type of operation performed and its start
and end times within the EM trace.

e Black-box adversary: This adversary has no control over
the firmware or inputs of the DUT, i.e. operations cannot be
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Figure 2: Example of a low-pass filtered amplitude-based (top) and STFT-based (bottom) template signal for SHA1-PRF, created
by averaging EM emissions from a NodeMCU device that were measured using a USRP B210 sampling at 56 MS/s. Different
stages of the algorithm, such as the 4 HMAC-SHA1 invocations, can be visually distinguished.

triggered on demand. They can only observe its EM emis-
sions and must therefore be able to detect operations of in-
terest in real time as they occur spontaneously.

3.5 Operation templates

For both ML and classical template matching, creating good tem-
plates requires solving two challenges: (i) sufficient measurements
need to be made in order to be able to model the operation un-
der different conditions and (ii) the measurements must be pre-
processed (i.e. demodulated, filtered and normalized) in order to
improve their quality. Furthermore, since the EM radiation is af-
fected by various device-specific factors such as circuit geometry,
coupling effects, and operation implementation [2, 21], templates
are specific to the DUT, which justifies the requirement to have an
identical device available for profiling.

In this work, we will consider two transformations of the com-
plex EM trace as features for creating templates and classifying
operations. The first is the AM-demodulated signal or instanta-
neous amplitude, defined as |x(t)| with x(¢) € C. We consider
this feature since some types of EM leakage are known to mani-
fest as Amplitude Modulation (AM) signals [2]. The instantaneous
amplitude is furthermore commonly used to perform SCA in prac-
tice. A disadvantage of solely considering the instantaneous ampli-
tude however, is that all frequency-related information of the EM
trace is discarded. Since previous works have indicated that useful
side-channel information may be found in the frequency domain
as well [2, 12, 31, 36], we consider the STFT as a second feature
in our experiments. The STFT is obtained by applying a Fourier
transformation to segments of a given size w of a complex signal.

3.5.1 Classical template matching amplitude templates. To create
a template for classic amplitude-based template matching, we start
by using the protocol described in Section 3.2 to capture a set S, of
n, traces of length ny for each operation o € O. Then, the following
steps are performed:

(1) For each operation, we visually locate a part of one trace
where the operation is taking place, for example by looking
at the signal envelope or waterfall plot. We will refer to this
part of the trace as the “bootstrap signal” b, (t) of length ny,.

(2) Low frequency noise introduced by the chip is removed from
the bootstrap signal and traces in S, using a Butterworth
high-pass filter, and the signal is AM demodulated. We then
apply another high-pass filter to remove low-frequency noise
from the signal envelope.

(3) The bootstrap signal b, () is chosen as a reference trace and
correlated with the remainder of traces x(¢) € S, using
asliding-window Zero-mean Normalized Cross-Correlation
(ZNCC) denoted c(t) as follows:

T (bo (i) = bo) (x(i + ) — X(1))
VER (o) = bo)2 27, (x(i+0) = %(1))2

Cbg,x(t) =

where b, and X(t) indicate the mean of the bootstrap signal
and windowed mean of the trace respectively. We use the
arg max of the correlation trace to determine the relative
offset between the reference trace and other traces in S,.

(4) Finally, we average the aligned traces over the trace index
axis to obtain the signal z, ():

1 &
zo(t) = — Zx,-(t), xj € S, € RoXMx
¢ =1

According to the law of large numbers and assuming the noise is
Gaussian, a larger number of traces n, will yield an average signal
2z, closer to the expected value, i.e. a template that is free of noise.
We will refer to such signals as “template signals”.

Figure 2 (top) shows an example of an amplitude-based template
signal for the SHA1-PRF algorithm, obtained by averaging 1,739 sig-
nals sampled at 56 MS/s. Note that we can visually distinguish pat-
terns related to the execution, e.g., for SHA1-PRF we can identify
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the four iterations of HMAC-SHAT taking place. Appendix B shows
an overview of all template signals for the operations considered
in this paper.

3.5.2 Classical template matching STFT templates. For the STFT-
based templates, the following steps are performed:

(1) The bootstrap signal b, (t) for each operation is transformed
using an STFT with FFT size of 512 and overlap of 90%. The
FFT size can be tweaked to trade off time resolution ver-
sus frequency resolution. For SHA1Transform, which is the
shortest operation in our set (21.43 ps), this size and over-
lap configuration results in approximately 23 FFT windows
containing part of the operation.

(2) Analogous to steps 3 and 4 for the amplitude-based tem-
plates, we perform a sliding-window ZNCC with the boot-
strap signal for each of the traces in the set, and average the
resulting aligned STFT traces to obtain the template signal
for each operation.

Figure 2 (bottom) shows an example of an STFT template signal
for the SHA1-PRF algorithm, obtained by averaging 7,192 signals
sampled at 56 MS/s. Again, we can visually distinguish changes in
frequency-related features when the individual HMAC-SHA1 invoca-
tions happen during SHAT-PRF.

3.5.3  Machine-learning based templates. For creating ML templates
we follow a similar approach, except we do not need to manually
select a bootstrap signal and align the traces. We filter the traces
in S, and perform AM demodulation or a STFT transform analo-
gous to the classical templates. Next, we normalize the trace set
such that the dynamic range falls within the interval [-1, 1] for
amplitude-based features and [0, 1] for STFT-based features. The
resulting traces comprise the training set, which we will optimize
with respect to an objective function to automatically learn the
relationship between input features and their corresponding oper-
ation.

4 EXPERIMENTS

4.1 Classical template matching baseline

As a baseline for detecting operations of interest in a trace of EM
emissions, we evaluate the “random label” dataset using two met-
rics that are commonly used in the domains of SCA and computer
vision for template matching: ZNCC and Mean Squared Error (MSE).
We will assume a grey-box adversary who has created templates
for each of the operations of interest as described in Sections 3.5.1
and 3.5.2, and whose goal it is to distinguish which operation was
performed in a given test trace, based on the measured EM leak-
age alone. Note that we assume the worst-case scenario, where the
adversary has only one measurement of the operation of interest
available. In practice, an adversary could (i) take multiple measure-
ments of the same operation, synchronize them in time and take
the average signal in order to improve the Signal-to-Noise Ratio
(SNR) of the operation or (ii) perform majority voting on the indi-
vidual measurements to determine the correct class.

4.1.1 Zero-mean normalized cross-correlation. When using the ZNCC,

we correlate the EM trace with the template for each operation o
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and choose the operation with the highest correlation as the pre-
dicted class 0:

6 = arg max(max(cp (1))
00 4 i

Figure 3 shows the confusion matrix that is obtained when us-
ing this methodology to classify EM traces from the “random la-
bel” test dataset. The accuracy of using ZNCC to classify traces is
36.74%, with a macro-average precision and recall of respectively
47.23% and 37.38%. Notice that many of the incorrect predictions
can be attributed to the SHA1Transform operation. The reason for
these incorrect classifications is twofold. First, since this operation
has a duration of only 21.43 pus (approximately 1,200 samples), its
template has a higher probability of matching with random noise
than other operations. Second, the ZNCC struggles to differenti-
ate between operations that are contained within other operations.
For example, SHA1Transform is called as a subprocedure in the
SHAT, HMAC-SHA1, and SHA1-PRF operations. Consequently, we see
a higher number of false positives for SHA1Transform when these
operations take place.
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Figure 3: Confusion matrix for the classification of EM
traces from the “random label” test set, using ZNCC.

4.1.2  Mean squared error. For the MSE metric, we choose the op-
eration with the lowest squared error as the predicted class 0:

np
dpy (1) = — > (bo i) = x(i + )2
" A
0 = argmin(min(dy_,()))
0€0 t i

The confusion matrix when classifying the “random label” test
dataset is shown in Figure 4. Note that the MSE is more sensi-
tive to bias and scaling compared to the ZNCC, since we do not
subtract the means of the signals or normalize by their standard
deviations. In this case, the MSE almost always matches with the
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SHATTransform operation on a patch of noise, resulting in a macro-
average precision of only 1.19%.
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Figure 4: Confusion matrix for the classification of EM
traces from the “random label” test set, using MSE.

4.1.3 STFT template matching. For our classical template match-
ing experiment using the STFT templates described in Section 3.5.2,
we used the ZNCC and MSE metrics to classify test traces from
the “random label” dataset analogously to amplitude-based tem-
plate matching. The results of this experiment are very similar to
Figure 4: the templates frequently match with noise following the
actual operation, resulting in many false positives for the OpenSSL
AES class (when using MSE) and SHA1Transform class (when using
ZNCC). The confusion matrices are provided in the supplimentary
material of this paper (see Section A.2).

4.1.4 Discussion. Based on the previous experiments, we conclude
that classical template matching is infeasible for classifying oper-
ations based on a single EM trace. The low SNR of operations of
interest and the use of only local features in the trace causes the
templates to frequently match with noise or overfit to one specific
class.

We note that the accuracy of classical template matching can
be greatly improved by either cropping the EM trace closer to the
operation of interest itself or by aligning and averaging multiple
test traces before performing the classification. Both of these ap-
proaches result in less noise being present in the trace. However,
recall from Section 3.4 that we assume that an adversary has only a
coarse notion of when the operation starts and ends, and that they
must determine which operation is taking place based on a single
EM trace. Hence, they cannot crop the trace to the operation of
interest or create a less noisy signal by averaging multiple traces.

In the next sections, we will devise an approach to overcome
this problem, allowing an adversary to identify and locate the op-
eration of interest based in a single EM trace.

Robyns et al.

4.2 1D CNN classification

4.2.1 Architecture. Over the past years, a large variety of CNN ar-
chitectures have been proposed and applied to solve challenges in
the domains of image classification, object detection [29], speech
recognition[37], side-channel analysis [27], and many others [18].
In convolutional layers of a neural network, kernels or “filters” are
optimized with respect to a given loss function. When such a layer
of filters is convolved with an input, it essentially acts as a feature
detector for the next convolutional layer [17]. This is in contrast to
fully connected layers, where each feature depends on all features
of the previous layers.

In context of SCA, Benadjila et al. proposed a CNN design to ex-
tract features from EM traces of a side-channel protected AES im-
plementation [27]. Their design was based on VGG-16, a CNN for
image recognition introduced earlier by Simonyan et al [33]. The
architecture they propose expects 700-point inputs of EM leakage
measurements taken during the first round AES, which are passed
through five blocks of convolutional / average pooling layers and
three fully connected layers [27]. Similar convolution-based archi-
tectures were implemented in recent works to perform side-channel
attacks on cryptographic algorithms [26, 38, 40].

For this experiment, we designed a CNN architecture, inspired
by the architecture of Benadjila et al., to accomodate the needs
of an adversary who operates under the assumptions of our grey-
box adversarial model (see Section 3.4). Specifically, recall that we
assume the adversary can trigger an operation through external
means and measure the resulting EM emissions. For example, the
adversary could trigger a series of AES decryption operations by
sending a Wi-Fi frame to a CCM-mode enabled device.

The fixed 700-point input required by the architecture presented
by Benadjila et al. translates to a maximum trace duration of 12.5
ps when sampling at 56 MS/s, which is too low for our purposes:
the longest operation of interest we consider, SHA1-PRF, has an
execution time of approximately 928 ps (51,968 samples) on the
DUT. Furthermore, when the adversary triggers the operation, it
does not start instantaneously due to various transmission and pro-
cessing delays. With these delays in mind, a large enough window
of samples must be considered such that the whole operation is
contained within it. For the protocol described in Figure 1, we ex-
perimentally determined that on average, the delay between the
start of the measurement and the start of the operation of interest
is at least 357 ps (20,000 samples), whereas the total duration of
the operation rarely exceeds 2.34 ms (131,072 samples). As such,
the traces from the “random label” datasets described Section 3.3
were truncated to this interval, which allows us to use traces of a
fixed 131,072-point duration as inputs to the CNN.

To make computations with large inputs more tractable, we re-
duce the number of filters per convolutional layer and perform av-
erage pooling with wider filters and strides. In addition, we also
add a number of convolution and pooling layers in order to in-
crease the receptive field of the CNN. Lastly, we define an addi-
tional “noise” class that represents the case where no operation
besides the serial protocol itself (i.e., the trigger) is taking place,
resulting in a total of 9 output neurons used as predictors for the
operation classes. The final architecture is shown in Figure 5. The
CNN was implemented using the Keras [6] ML framework with a
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Figure 5: Overview of the CNN architecture used for classify-
ing amplitude-based traces in a grey-box adversarial model.

Tensorflow backend [1]. The implementation has been made avail-
able publicly on Github!.

4.2.2 Training and evaluation. We trained the architecture detailed
in the previous section on the “random label” dataset training data
for one epoch on the desktop workstation mentioned in Section 3.1
by optimizing the cross-entropy loss using the Adam optimizer [14].
Since training examples can theoretically be generated and auto-
matically labeled ad infinitum, it should not be necessary in prac-
tice to perform data augmentation or to perform multiple itera-
tions over the same training data. In addition, doing the latter may
lead to overfitting. Before feeding the signals to the inputs of the
CNN, the signals were preprocessed as described in Section 3.5.3.
The confusion matrix after evaluating on the test set is shown
in Figure 6. Overall, we obtain a 94.43% accuracy, with a macro-
average precision of 94.93% and macro-average recall of 94.06%.
Compared to classical template matching, these results indicate
that our CNN is much better at distinguishing operations that are
contained within other operations, such as SHA1Transform.

4.3 2D CNN classification

4.3.1 Architecture. Similarly to the classical template matching ex-
periments, we examined the effectiveness of utilizing the STFT as
input features for a CNN. The architecture that we used is shown
in Figure 7.

To prepare the inputs to the CNN, each trace is windowed or
padded to alength of 131,328 samples and subsequently transformed
using a 512-point STFT with 50% overlap. This results in a square
512 x 512 input vector per training example. The values of the in-
puts are normalized to the interval [0, 1] before they are fed to the
network. The input layer can be interpreted as a collection of im-
ages, which are passed through 5 2D convolutional blocks similarly
to the VGG-16 architecture.

4.3.2  Training and evaluation. Identical to Section 4.2.2, we trained
the 2D CNN on the “random label” dataset training data for one
epoch on our desktop workstation. The confusion matrix after eval-
uating on the test set is shown in Figure 8.

Uhttps://github.com/rpp0/em-operation-extraction
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Figure 6: Confusion matrix for the classification of EM
traces from the “random label” test set, using our 1D CNN.
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Figure 7: Overview of the CNN architecture used for clas-
sifying STFT-transformed traces in a grey-box adversarial
model.

With an accuracy, precision and recall of respectively 94.38%,
95,92% and 94.01%, the results are comparable to the 1D CNN.

4.4 1D CNN classification with extraction

4.4.1 Architecture. While the CNN architectures described in the
previous sections allow a grey-box adversary to determine which
operation was performed within a time segment of fixed duration,
they cannot determine where precisely in the time segment the
operation of interest takes place. This information would be espe-
cially useful in context of SCA: if the CNN can automatically deter-
mine the start and end boundaries of an operation of interest, the
adversary is no longer required to modify firmware of the DUT in
order to incorporate triggers before or after an operation of inter-
est.

To achieve this, we extend the output layer of the CNN to pre-
dict two additional outputs: (i) the midpoint between the start and
end of the operation and (ii) the width or duration of the opera-
tion of interest. These quantities are sufficient to predict a bound-
ing box around the operation while simultaneously predicting its
class label. Conceptually, this approach to predict a bounding box
is similar to the work presented by Redmon et al. [29], except we
do not need to predict multiple bounding boxes or divide the trace
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Figure 8: Confusion matrix for the classification of EM
traces from the “random label” test set, using our 2D CNN.

into multiple segments because an adversary would not trigger the
DUT to perform multiple operations within the same time frame.
Both the midpoint and width are normalized with respect to the
number of samples in a segment, such that their values lie within
the interval [0, 1].

4.4.2 Training and evaluation. For training the updated CNN, we
can initialize the model parameters with the trained model param-
eters obtained from Section 4.2, and only retrain the last layer. We
use the “random label with bounding boxes” dataset as the inputs.
Recall from Section 3.3 that the operation bounding boxes for the
training data in this dataset were manually labeled. Hence, we can-
not generate training examples on the fly as before. To prevent
the model from overfitting on this limited set of labeled bound-
ing boxes, we perform data augmentation by rolling the trace and
bounding box randomly along the time axis. Here, we limit the
rolling operation such that the distance between the left bound
and right bound is unchanged with respect to the original trace.
This prevents any random splits inside the bounding box of the op-
eration of interest. The data augmentation procedure ensures that
bounding boxes and operations can occur at any position within
the 131,072-point time segment. We use a custom loss function
to optimize the classification and bounding box parameters simul-
taneously. Given a one-hot encoded class label y, bounding box
width w, bounding box midpoint m and their respective predic-
tions g, w, and r, this loss function is defined as:

no
L(y9) ==Y yilog(di) + ATy [(w = #)? + (m - 1i)?]
i=1
where 1, is an indicator function that is one when a bounding
box is defined for the training example and Ay, is a user-configurable
parameter that can be used to tweak the importance of loss result-
ing from incorrect bounding box predictions. In our work, we set
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Ap to 102, Note that the indicator function allows to ignore the
bounding box loss altogether when the “no operation” class is pre-
dicted. Finally, the total cost of a single training step is the average
loss of the training batch B C S containing npg training examples.:

1 G
Cwd) = D, Ly 5?)
i=1

The confusion matrix after training for approximately one day
on the “random label with bounding boxes” training set and eval-
uating on the test set is shown in Figure 9.
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Figure 9: Confusion matrix for the classification of EM
traces from the “random label with bounding boxes” test set,
using our 1D CNN.

For this experiment, we obtain an accuracy of 74.90%, and a pre-
cision and recall of respectively 77.84% and 77.87%. The mean ab-
solute error of the bounding box predictions with respect to the
ground truth for 239 traces containing an operation is 429.81 ps
(24,069 samples) per trace. Although the classification accuracy is
lower compared to the experiments without bounding boxes, we
still believe this is a good result given the limited set of 256 labeled
training examples.

4.5 2D CNN classification with extraction

Analogous to the 1D CNN scenario from the previous section, we
modified the 2D architecture from Section 4.3 to predict the mid-
point and width of the operation of interest. However, note that
since we applied a 512-point STFT transformation with 50% over-
lap to the traces, the granularity of predicted start and end bound-
aries of the operation of interest is limited to units of 4.57 s (256
samples). The same data augmentation technique from Section 4.4
was applied during training. Figure 10 shows the confusion matrix
after training for approximately one day on the “random label with
bounding boxes” training set and evaluating on the test set. This
methodology achieves an accuracy, precision, and recall of respec-
tively 96.47%, 96.69%, and 96.78%. The mean absolute error of the
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bounding box predictions with respect to the ground truth for 239
traces is 34 ps (1,904.02 samples) per trace.
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Figure 10: Confusion matrix for the classification of EM
traces from the “random label with bounding boxes” test set,
using our 2D CNN.

4.6 Detecting operations in a Wi-Fi connect

4.6.1 Improved data augmentation. Up until now, we assumed a
grey-box adversary who can trigger operations on demand from
the DUT. In a black-box adverserial model (see Section 3.4), the ad-
versary cannot perform any interactions with the DUT. This means
that they must continously capture EM emissions and distinguish
operations of interest on the fly. For this experiment, we will there-
fore use the “Wi-Fi connect dataset”, which contains 3 full traces
of the NodeMCU performing the wifi.sta.connect() function
to connect to an AP.

Considering our CNN is trained to distinguish the “noise” class
from operations as evidenced in Section 4.4.2, one could segment
the trace into overlapping sections of length 131,072, and feed them
individually to the network. However, in contrast to the previ-
ous experiments, for the “Wi-Fi connect dataset” we do not know
which segments contain operations since they occur spontaneously,
rather than being triggered externally. This prevents us from eval-
uating the accuracy of our models. To resolve this issue, we insert
the segments containing operations of interest from the “random
label with bounding boxes” test set inbetween random snippets
from a “Wi-Fi connect dataset” trace. This gives us the benefit of
being able to simulate a black-box environment while retaining the
ability to evaluate the accuracy of our model.

Finally, since the noise profile measured during the execution
of the protocol from Figure 1 substantially differs from the noise
profile measured during a real Wi-Fi connection, we need to train
our model to be able to recognize these different types of noise.
We achieved this by modifying our augmentation procedure from
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the previous experiments to insert the operation of interest inbe-
tween a random snippet from a “Wi-Fi connect dataset” trace with
probability 1/2.

4.6.2 Evaluation. To evaluate our models, we insert operations
from the “random label with bounding boxes” test set into a ran-
dom snippet from the “Wi-Fi connect dataset” trace with probabil-
ity 1. For the 1D CNN, the accuracy, precision and recall decrease
to respectively 38.04%, 63.84%, and 40.44%. Similarly, the 2D CNN
performance decreases to an accuracy, precision and recall of re-
spectively 55.29%, 78.67%, and 54.36%. Visual inspection of incor-
rect classifications reveals that they are often caused by microar-
chitectural effects of the NodeMCU. We will discuss this problem
in greater detail in Section 5 and consider improving the accuracy
in black-box scenarios as an interesting challenge for future work.
The confusion matrices for this experiment can be found in Sec-
tion A.2.

As a final experiment, we evaluated the models trained with
the improved data augmentation method on the “random label
with bounding box” test set, and found that these models perform
slightly better for the 1D CNN and similarly for the 2D CNN on
the “random label with bounding box” test dataset classification:
the accuracy for the 1D CNN increases to 81.96%, whereas the ac-
curacy for the 2D CNN becomes 96.86%.

5 DISCUSSION

While the results from our experiments indicate that the use of
CNN s can be beneficial for detecting operations in context of SCA
and reverse engineering, we believe there are still many challenges
left to be solved. In this section, we will provide a detailed discus-
sion of these challenges and how they relate to the domain of com-
puter vision. Furthermore, we will discuss some of the limitations
of this study, and provide pointers for future work.

5.1 Occlusion, lighting and depth

Assuming only one CPU is targeted when classifying operations,
it should not be possible for two operations to take place at the
same time. At first sight, this seems a major benefit compared to
object detection in video or images, where objects of interest may
appear under different lighting conditions, at different depths, or
be occluded by other objects. However, for operation detection,
“lighting and occlusion” in EM traces comes from microarchitec-
tural effects that are hard to predict if the previous states of the
device are unknown. For example, speculative execution, caching,
pipelining and branch prediction all have an influence on the du-
ration and SNR of operations of interest.

In particular for our experiments, we found that the OpenSSL
implementations of AES and DES were the most difficult to local-
ize in EM traces, even to the human eye. Figure 11 shows two EM
traces of OpenSSL DES from our training set. Notice that the left-
most figure shows a large spike of EM emissions, occluding most
of the operation. We postulate that this effect is caused by cache
misses for two reasons. Firstly, we observe a similar effect for other
operations if we do not perform a “warm-up” of the operation,
meaning we execute the operation once before measuring its leak-
age. Secondly, the effect occurs mostly for the OpenSSL variants
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of the operations, even when performing a warm-up. These opera-
tions are the most memory intensive.
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Figure 11: Example of occlusion caused by microarchitec-
tural effects of the NodeMCU. The black bounding box indi-
cates the interval where OpenSSL DES is performed by the
device.

A limitation of our work is that we do not study the impact of
microarchitectural effects such as caching. Rather, we implicitly
assume the adversary can invoke the operation multiple times to
mitigate caching effects to some degree and incorporate these ef-
fects as part of our classification model. Nevertheless, it would be
useful to separately model these effects in future work, in order to
improve the classification accuracy.

Finally, EM side-channel defenses such as masking and hiding
could be considered as another form of occlusion, albeit deliberate
occlusion by the programmer. Though such measures are designed
to hide the data processed by the operation (e.g. the secret key
of AES) rather than the overall appearance of the operation in an
EM trace, they may still make it more difficult for an adversary to
create operation templates. The effectiveness of such measures in
this regard would be another interesting topic for future research.

5.2 Hardware and test setup

In this paper, we focused on detecting operations using commer-
cial off-the-shelf SDR hardware such as the USRP B210 with only
a single probe placed close to the CPU of the NodeMCU. A more
powerful adversary might be able to install multiple probes at mul-
tiple physical locations near the DUT and use more expensive hard-
ware in order to capture more features at a higher sampling rate.
Using hardware with a higher sampling rate would allow to fin-
gerprint operations from devices with a higher clock rate. Further-
more, devices under test with mixed-signal ICs may leak informa-
tion over several meters, as indicated by Camurati et al. [5]. There-
fore, in a future work it could be interesting to study the classifica-
tion accuracy under these more powerful adversarial models.

Other factors in a test setup that can influence EM measure-
ments are environmental effects such as the ambient temperature
[25] or interference from other devices. Although we did not ex-
plicitly study the impact of these effects, the datasets presented
in this work were recorded in an office environment over an ex-
tended period of time. As a result, we found that our trained models
still perform well on EM traces captured at later times: for traces
captured 24 days after the training set, we achieved similar accu-
racy. This experiment can be reproduced in a grey-box adversar-
ial setting using the realtime_capture.py script provided in the
Github repository, to classify traces in real time.
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5.3 Bottom-up operation detection

The templates of the operations of interest in this paper were con-
structed using a top-down approach. That is, all subprocedures ex-
ecuted by the operation are considered to be part of the template.
Another possibility would be to make templates for the subpro-
cedures themselves, and infer which higher level operations take
place based on observations of the subprocedures. As a concrete
example, once could make a template only for HMAC-SHA1, and in-
fer that SHA1T-PRF was performed on the device by observing a
sequence of 4 HMAC-SHA1 invocations.

If leakage can be measured with sufficient resolution, it is possi-
ble to create templates of instruction-level events. Reconstructing
higher-level operations from this information is an active area of
research. Examples are the works of Park et al. [25] and Eisenbarth
et al. [8]. However, these works focus on either low-end CPUs,
such as the ATMega328P, or FPGAs. In both cases, there is a more
clear relationship between EM leakage and executed operation. It
would be interesting to investigate new methods for identifying
instruction-level events in complex CPUs, such as the Tensilica
L106 or CPUs present in regular desktops and laptops.

5.4 Generalization

While this study focused on identifying 8 operations from the Node-
MCU, our methodology could be extended in future works to iden-
tify a larger variety of cryptographic operations or to identify op-
erations over multiple hardware platforms. As a result, a more gen-
eral model could be developed. Achieving this goal requires a num-
ber of challenging problems to be solved: on certain hardware plat-
forms, operations might have a non-constant execution time over

different iterations (e.g. due to optimizations), have a shorter or

longer overall duration, or have different leakage properties due

to differences in hardware architecture.

6 CONCLUSIONS

In this paper, we studied practical methods to classify and extract
8 possible operations of interest from singular EM emissions orig-
inating from a NodeMCU Amica device, using a USRP B210 SDR.
We evaluated and compared classical template matching to classi-
fication using CNNs for two types of features from EM traces: the
instantaneous amplitude and STFT. These methods were evaluated
under both a grey-box and black-box adversarial model, where our
best CNN models achieve an accuracy of respectively 96.47% and
55.29%. Lastly, we demonstrate how these models can be used to si-
multaneously predict the start and end times of operations within
34 ps of the ground truth on average.
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ONLINE RESOURCES

A.1 Datasets

Al

Structure. Batches of 16 traces are stored in separate files,

structured according to the “ChipWhisperer” format as follows:

e *_traces.npy: Numpy array of data type complex64 con-
taining the EM traces.

e “_textin.npy: Numpy array of uint8 lists containing the
plaintext given as input to the operations.

e *_knownkey.npy: Numpy array of uint8 lists containing
the key used in the operations (if applicable).

e *_meta.p: Pickled metadata of dictionary containing the op-
eration performed (“op”) and operation bounding box (“bo-
und_left” and “bound_right”).
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Figure 12: Overview of all STFT-based templates for the operations of interest considered in this paper.

A.1.2 Random label example counts.

A.13

nodemcu-random-train: des_openssl: 7377, shalprf: 7192,
aes: 7339, aes_tiny: 7322, shal: 7271, shaltransform: 7102,
aes_openssl: 7284, noise: 7349, hmacshal: 7300.
nodemcu-random-test: shaltransform: 428, aes_openssl:
482, hmacshal: 473, aes: 422, shalprf: 476, des_openssl: 451,
shal: 462, aes_tiny: 452, noise: 450

Random label with bounding boxes example counts.

nodemcu-random-label-train: shal: 24, shaltransform: 30,
noise: 36, des_openssl: 30, shalprf: 25, aes_tiny: 33, hmac-
shal: 32, aes_openssl: 25, aes: 21
nodemcu-random-label-test: shalprf: 38, shal: 31, hmac-
shal: 40, aes_openssl: 28, noise: 16, des_openssl: 25, aes_tiny:
27, aes: 28, shaltransform: 23

A.2 Trained models and results

The presented trained models and results are available at the WiSec
dataset page http://wisecdata.ccs.neu.edu/ and on https://github.
com/rpp0/em-operation-extraction.

B TEMPLATE SIGNALS

An overview of all STFT-based template signals is given in Fig-
ure 12.
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